

DECODES
Device Conversion and Delivery System

Version 5.4
User’s Guide

prepared for

U.S. Geological Survey, Water Resources Division
and

U.S. Army Corps of Engineers

prepared by

Ilex Engineering, Inc

5114 Crystal Park Lane
Ellicott City, MD 21043

Tel: 410.465.6948
Email: info@ilexeng.com

Revision 1.0

July 28, 2003

Table of Contents
1. INTRODUCTION TO DECODES.. 1
2. DECODES GENERAL CONCEPTS.. 3
3. DECODES DATABASE ARCHITECTURE ... 5

3.1 SETUP INFORMATION ... 5
3.1.1 Enumerations.. 5
3.1.2 Time Zones.. 7
3.1.3 Sensor Data Types .. 7
3.1.4 Engineering Units... 8

3.2 PROPERTIES.. 8
3.3 DECODING, FORMATTING, AND CONVERTING SPECIFICATIONS.. 9

3.3.1 Equipment Models .. 9
3.4 SITES & SITE NAMES.. 10
3.5 PLATFORM INFORMATION .. 11
3.6 PERFORMANCE MEASUREMENTS ... 12
3.7 PRESENTATION AND UNIT CONVERSION .. 13
3.8 EQUATION PROCESSOR INFORMATION ... 15
3.9 ROUTING SPECIFICATION INFORMATION .. 17

4. INSTALLING OR UPGRADING DECODES... 18
4.1 INSTALLING JAVA .. 18

4.1.1 Installing Java on Windows.. 18
4.1.2 Installing Java under Red Hat Linux.. 19

4.2 INSTALLING THE COMPLETE DECODES PACKAGE... 20
4.2.1 Setup DECODES Runtime Environment .. 21
4.2.2 Setup your DECODES Properties .. 22

4.3 UPGRADE INSTALLATION ... 23
5. USING DECODES WITH AN SQL DATABASE ... 24

5.1 POSTGRESQL... 24
5.1.1 Installing PostgreSQL .. 24

5.1.1.1 Installing PostgreSQL on Windows 2000, NT, or XP.. 25
5.1.2 PostgreSQL Startup and Initialization ... 25

5.1.2.1 Start the PostgreSQL Server on Windows 2000 or NT.. 26
5.1.3 Create PostgreSQL Administrative Account .. 26
5.1.4 Setup PostgreSQL Security... 26

5.2 HOW DECODES DOES DATABASE AUTHENTICATION .. 27
5.3 CONFIGURE DECODES FOR AN SQL EDITABLE DATABASE ... 28
5.4 CREATING THE DECODES EDITABLE DATABASE ... 28
5.5 IMPORTING DATA FROM YOUR OLD XML DATABASE.. 30
5.6 VERIFY THAT THE DATABASE WORKS ... 31

6. MAINTAINING THE DECODES DATABASE.. 32
6.1 INITIALIZING YOUR EDITABLE DECODES DATABASE.. 32

6.1.1 Standard XML Setup Files.. 32
6.1.2 Importing Data from EMIT or Pre-Release-5 DECODES ... 33
6.1.3 Importing XML Data from Other DECODES Sites .. 34

6.2 INTERACTIVELY EDITING THE DATABASE.. 34
6.3 UPDATING THE INSTALLED DATABASE .. 35
6.4 EXPORTING PLATFORMS TO XML FILES .. 36
6.5 OTHER DATABASE UTILITIES ... 37

6.5.1 Creating the Platform Cross-Reference File .. 37
6.5.2 Creating LRGS-Style Network List Files .. 38

7. THE DECODES DATABASE EDITOR .. 39
7.1 GUI ORGANIZATION .. 40

7.1.1 List Panels in General .. 40
7.1.2 Edit Panels in General.. 40
7.1.3 Exiting the Editor.. 40

7.2 THE PLATFORM EDIT PANEL .. 42
7.3 THE SITE EDIT PANEL .. 44
7.4 THE PLATFORM-CONFIG EDIT PANEL .. 45

7.4.1 The Decoding Script Edit Dialog.. 48
7.5 THE EQUIPMENT-MODEL EDIT PANEL ... 50
7.6 THE PRESENTATION GROUP EDIT PANEL ... 51
7.7 THE DATA SOURCE EDIT PANEL .. 53
7.8 THE NETWORK LIST EDIT PANEL... 55
7.9 THE ROUTING SPECIFICATION EDIT PANEL.. 56

8. THE DECODES FORMAT LANGUAGE ... 58
8.1 EXECUTION OF FORMAT STATEMENTS BY A ROUTING SPEC .. 58
8.2 STEPPING THROUGH THE SCRIPT AND THE DATA ... 58
8.3 FORMAT OPERATIONS .. 59

8.3.1 Skipping and Positioning Operations ... 61
8.3.2 The Check Operation.. 61
8.3.3 The Scan Operation .. 62
8.3.4 The Jump Operation ... 62
8.3.5 The Repeat Operation... 62
8.3.6 Field Operations... 63

8.3.6.1 Date Fields ... 64
8.3.6.2 Time Fields .. 65
8.3.6.3 Time Interval Fields ... 66
8.3.6.4 Format Label Fields ... 66
8.3.6.5 Sensor Value Fields ... 67

9. DECODES ROUTING SPECIFICATIONS .. 68
9.1 HOW TO RUN A ROUTING SPECIFICATION .. 69

9.1.1 Routing Spec Properties ... 69
9.2 DATA SOURCES.. 70

9.2.1 LRGS Data Source.. 70
9.2.1.1 Timeouts in LRGS Data Sources ... 72

9.2.2 File Data Source... 73
9.2.2.1 Delimiting Messages Within the File... 73

9.2.3 Directory Data Source.. 73
9.2.4 Hot Backup Group Data Source... 74
9.2.5 Round Robin Group Data Source... 75
9.2.6 Socket Stream Data Source .. 76

9.2.6.1 Using SocketStreamDataSource for NOAAPORT .. 77
9.3 OUTPUT FORMATTERS ... 78

9.3.1 SHEF Output Format ... 79
9.3.2 SHEFIT Output Format.. 80
9.3.3 Human Readable Output Format ... 81
9.3.4 EMIT-ASCII Format... 82
9.3.5 EMIT-Oracle Format ... 83
9.3.6 Dump Formatter ... 84
9.3.7 USGS STDFMT Output Formatter ... 85
9.3.8 Transmit Monitor Formatter .. 86

9.4 CONSUMERS... 88
9.4.1 Pipe Consumer ... 88
9.4.2 File Consumer .. 88

9.4.3 Directory Consumer ... 89
9.5 TIME TAGGING DATA SAMPLES ... 91

10. SPECIFIC SCENARIOS... 92
10.1 HOW TO CREATE A NEW PLATFORM SPECIFICATION... 92

Create a Site for the New Platform... 92
Create an Equipment Model Record for the New Platform .. 92
Create a Configuration for the New Platform .. 93

Rules and Conventions for Configuration Naming ... 94
Enter the Sensor and Formatting Information ... 95

Create the Platform Record .. 96
Add the new Platform to a Network List ... 97
Testing the new Platform in a Routing Spec ... 97

Table of Figures
FIGURE 1-1: WHAT DECODES DOES. .. 1
FIGURE 2-1: DECODES DETAILED DATA FLOW .. 3
FIGURE 2-2: DECODES COMPONENTS... 4
FIGURE 3-1: ENUMERATIONS ERD.. 5
FIGURE 3-2: DATA TYPES ERD... 7
FIGURE 3-3: ENGINEERING UNITS & CONVERTERS ERD. ... 8
FIGURE 3-4: EQUIPMENT MODEL ERD.. 9
FIGURE 3-5: SITES AND SITE NAMES ERD. ... 10
FIGURE 3-6: PLATFORM INFORMATION ERD... 11
FIGURE 3-7: PERFORMANCE MEASUREMENTS ERD.. 12
FIGURE 3-8: PRESENTATION AND UNIT CONVERSION ERD... 13
FIGURE 3-9: EQUATION PROCESSOR ERD... 15
FIGURE 3-10: LOOKUP TABLES ERD... 16
FIGURE 3-11: ROUTING SPECIFICATION ERD.. 17
FIGURE 4-1: WINDOWS 2000 ENVIRONMENT VARIABLE DIALOG. .. 21
FIGURE 7-1: DATABASE EDITOR PLATFORM LIST SCREEN. ... 39
FIGURE 7-2: PLATFORM CONFIG EDIT PANEL. .. 41
FIGURE 7-3: PLATFORM EDIT PANEL... 43
FIGURE 7-4: TRANSPORT MEDIUM EDIT DIALOG. ... 43
FIGURE 7-5: THE SITE EDIT PANEL. .. 44
FIGURE 7-6: PLATFORM CONFIG EDIT PANEL. .. 46
FIGURE 7-7: EDIT CONFIG SENSOR DIALOG. ... 47
FIGURE 7-8: DECODING SCRIPT EDIT DIALOG SHOWING INTERACTIVE DECODING....................................... 49
FIGURE 7-9: EQUIPMENT MODEL EDIT DIALOG. ... 50
FIGURE 7-10: PRESENTATION GROUP EDIT PANEL.. 52
FIGURE 7-11: DATA SOURCE EDIT PANEL SHOWING LRGS DATA SOURCE. ... 53
FIGURE 7-12: DATA SOURCE EDIT PANEL SHOWING HOT BACKUP GROUP... 54
FIGURE 7-13: NETWORK LIST EDIT PANEL.. 55
FIGURE 7-14: ROUTING SPECIFICATION EDIT PANEL. ... 57
FIGURE 9-1: DATA FLOW FOR ROUTING SPECIFICATIONS. .. 68
FIGURE 9-2: EXAMPLE OF SHEF .A OUTPUT... 79
FIGURE 9-3: EXAMPLE OF SHEF .E OUTPUT.. 79
FIGURE 9-4: EXAMPLE OF SHEFIT OUTPUT FORMAT. .. 80
FIGURE 9-5: EXAMPLE OF HUMAN READABLE OUTPUT FORMAT.. 81
FIGURE 9-6: EXAMPLE OF EMIT-ASCII FORMAT. .. 82
FIGURE 9-7: EXAMPLE OF EMIT-ORACLE OUTPUT FORMAT.. 83
FIGURE 9-8: EXAMPLE OF DUMP OUTPUT FORMAT... 84
FIGURE 9-9: EXAMPLE OF USGS STDFMT OUTPUT. ... 85
FIGURE 9-10: EXAMPLE OF TRANSMIT MONITOR FORMAT. .. 86

DECODES User Guide 1

1. Introduction to DECODES
DECODES stands for DEvice COnversion and DElivery System. DECODES is a suite of
software that takes data from a variety of recording devices and converts it into standard
engineering units, suitable for entry into a database.

The types of recording devices include both Electronic Data Loggers (EDLs), which are
electronic recorders whose data for the most part are manually retrieved, and Data
Collection Platforms (DCPs), whose data are retrieved by satellite telemetry.

The operations performed by DECODES are depicted in Figure 1-1.

Retrieve the Data

Decode & Time-
Tag the Data

Convert Data to
Engineering Units

Present Data in a
Usable Format

Compute Derived
Parameters

Save data to
some media

Figure 1-1: What DECODES Does.

The fourth step, “Compute Derived Parameters” is not implemented in the current
release.

Currently DECODES can handle data from any GOES DCP received either from a
GOES receiver or over DOMSAT. It has the basic capability to parse data from EDL
files, but this capability has not been extensively tested in the current release.

Data can be retrieved from saved files or over the network from an LRGS.

DECODES can handle any ASCII format currently in use by the DCS. This includes true
ASCII values or the pseudo-binary values common in compact random messages.

DECODES User Guide 2

DECODES uses a database of platform specifications to tell it how to decode data from a
given source. DECODES manages a fairly complex database that includes entities for:

DataSource Where to retrieve raw data from: Directory, File, LRGS Network
Connection, shared memory, etc. If an LRGS network connection
is specified, you can specify network lists, time-ranges, etc.

Platforms & Sites Site-specific parameters such as transmission times, GOES channel
numbers, DCP address, etc.

DecodingScript A structured scripting language that tells DECODES how to
extract time-tagged samples from the raw messages

EU-Converters How to convert raw values into engineering units, and how to
convert between various types of engineering units (e.g. feet to
meters).

PresentationInfo How to format each type of sample. For example, you might want
all stage values to be presented in centimeters with 10.3 resolution.

DataTypes DECODES knows how to convert between the USGS (EPA)
numeric codes and SHEF physical element codes.

Formatters How to format data on output. Formatters are implemented for
SHEF, SHEFIT, Human-Readable, and “Dump”.

Consumers Where to put the output data: files, directories, pipes, etc.

RoutingSpec Puts all of the above together. A RoutingSpec says where to get the
raw data, how to decode it, how to EU convert it, how to format it,
and where to send it.

DECODES is written in 100% pure Java. Therefore there should be (almost) no porting
issues in running it on any modern computing platform. Ilex Engineering has tested it
under Windows 2000 and Linux.

DECODES merges the capabilities of the former DECODES software used by U.S.
Geological Survey (USGS) with the EMIT (Environmental Message Interpreter
Translator) software used by several U.S. Army Corps of Engineers (USACE) districts.

DECODES is open-source software. It was developed by Ilex Engineering, Inc., under a
contract jointly funded by USGS and USACE. To obtain a copy of DECODES software,
contact the U.S.G.S. Water Resources Division Headquarters.

For more information on Ilex Engineering, Inc., visit our web site at www.ilexeng.com,

call us at 410.465.6948, or email us at info@ilexeng.com.

DECODES User Guide 3

2. DECODES General Concepts
Figure 2-1 provides a more detailed data flow diagram of what happens when data is
decoded. In each box in the figure, different algorithms and parameters are applied
according to information in your database.

DataSource

LRGS,
DRS,

GOES DRGS,
File,

Directory,
LOS Radio,

etc.

Decode &
Convertraw data

Equation
Processor

Extract samples,
time-tag,

convert to EU

Stage-to-flow,
other algorithms,

table-lookup,
USGS Rating Tables,

etc.

extracted
samples

Presentation
extracted
& derived
samples

Formatting

Converted to desired EUs,
rounding rules applied

Consumer

SHEF, SHEFIT,
Human Readable,

STDMSG, EUMSG,
DUMP Debug, etc.

Complete,
formatted data

File, Directory, Pipe,
Program, Socket, GUI,

etc.

Convert to desired
engineering units, apply

rounding rules, etc.

Figure 2-1: DECODES Detailed Data Flow

DECODES User Guide 4

Figure 2-2 shows the DECODES software components and how they relate.

Editable
Database

(XML or SQL)

Installed
Database

(XML)

Database Editor GUI

Old
DECODES

& EMIT
(SDF) Files

EmitImport

XML Files
from other
Districts

DbImport DbInstall

RoutingSpec
Executer

Joe User

Raw Data Decoded
Data

DbExport
PlatformExport

LRGS, DRGS,
other data sources

Figure 2-2: DECODES Components.

EmitImport can accept files from EMIT and legacy DECODES systems. These older
software packages could export what was commonly called an SDF or Site Device File.
If you currently use EMIT or an older version of DECODES, you can import your
platform specifications directly into DECODES 5.

DbImport accepts XML files from other organizations using DECODES. A primary goal
of DECODES is to encourage interagency cooperation.

Two utilities, DbExport and PlatformExport can be used to create XML files for
exchange.

An extensive GUI database editor is provided for creating new DECODES specifications
and modifying existing ones. The editor has features for interactively decoding raw data
on-the-fly as you modify your specifications.

The DbInstall utility takes records from your editable database that you have blessed, and
places them into the “installed database” for your production system.

The Routing Specs use information from the installed database to decode and convert raw
data from a variety of sources.

DECODES User Guide 5

3. DECODES Database Architecture
This chapter provides an overview of the DECODES database. For a more complete
listing of elements, along with SQL and XML schema, see the DECODES 5 Database
Schema Document.

We divide database records into two categories:

• Setup Information – These are records that should rarely change, such as standard
unit conversions, data type records, etc.

Decoding & Converting Specifications – You will modify these records as you add,
delete, or modify platforms; pull data from different sources; integrate new back-end
databases; etc. An extensive GUI editor (see Chapter 7) is provided for maintaining
these records.

Database information is shown using Entity Relationship Diagrams (ERD). These
diagrams show the information contained in each entity and how different entities relate
(shared keys, etc.).

3.1 Setup Information
Setup information should rarely change. The DECODES distribution comes with fully-
populated tables of setup information. This will be sufficient for most organizations.

Currently the only way to modify Setup Information is to modify XML files by hand.
Future releases will include a setup GUI.

3.1.1 Enumerations

Figure 3-1: Enumerations ERD.

There are several places where an object must hold a string that must be constrained to
one of several valid choices (i.e. an enumeration type). DECODES contains static tables
in the database to store the valid choices for these enumerations. GUI programs can use
these tables to offer pull-down menus for selection. They can also be used for validation
when importing an XML file from another agency.

An enumeration is made up of a single ‘Enum’ entity and a series of associated
‘EnumValue’ entities. Think of ‘Enum’ as a type, and ‘EnumValue’ as the associated
values that are valid for that type.

DECODES User Guide 6

The Enum entity holds the name of the type. Table 3-1 lists the enumerations used in the
DECODES database.

Enum Name Description
SiteNameType The ‘type’ values for site names. DECODES comes pre-loaded with four site

name types: NWSHB5, USGS (site number), USGS-DRGS, Local.
DataTypeStandard SHEF-PE, EPA-Code, etc.
RecordingMode F=Fixed regular interval, V=Variable, triggered, or random.
ScriptType Different ways to extract data from the raw platform messages. “Standard”

scripts use the DECODES format statements to extract samples from your
messages. This enumeration provides a hook for creating custom decoders.

TransportMediumType GOES (either self-timed or random), File, Modem, NWSTG, etc.
DataOrder A=ascending, D=descending. “Ascending” means that the earliest samples

appear in the message first.
UnitFamily “Metric” or “English”
UnitConversionAlgorithm Four algorithms for converting from one EU to another:

• “none” means no-conversion-necessary. In other words, the input and
output units are synonyms. Example mL and cc.

• “linear”: y = Ax + B
• “USGS-Standard”: y = A * (B + x)C + D
• “Poly-5”: y = Ax5 + Bx4 + Cx3 + Dx2 + Ex + F

Other algorithms can be easily added in the future.

Measures A list of physical quantities that are measured by sensors. Used to associate
units in different unit families. For example Meters and yards are related
because they both are ‘measures’ of length. This list includes “arc”, “area”,
“flow”, “length”, “temperature”, “time”, “velocity”, “voltage”, and “volume”.

EquationScope DCP, DCF, NL, SITE, ALL
LookupAlgorithm Linear, Exponential, Logarithmic, Truncating, Rounding, or “Exact-Match”
OutputFormat The following output formats are currently implemented

• SHEF – Standard Hydrometeorologic Exchange Format
• SHEFIT – Intermediate format used by USACE
• Human-Readable – compact row/column format
• EMIT-ASCII – Compatible with the “ASCII” format produced by EMIT
• EMIT-ORACLE – Compatible with the “ORACLE” format produced by

EMIT

DataConsumer Data Consumers specify where to send data once it has been decoded,
converted, and formatted:
• File – write to a specified output file
• Directory – write each message to a separate file in a specified directory.
• Pipe – send data to standard output, usually for piping into another

program.
DataSourceType Data Sources provide raw messages to the decoder:

• File – read raw messages stored in a file
• Directory – Each file in the specified directory should contain a single

raw message
• LRGS – Connect to an LRGS or DRS over the network and pull messages
• HotBackupGroup – Used to specify a group of LRGS systems. If one

connection fails, use another in the group.
• RoundRobinGroup – Read data continually from a group of other data

sources (directories, files, LRGS, etc.)
• SocketStream - Reads a stream of messages from a TCP socket.

DECODES User Guide 7

Table 3-1: Enumerations in the DECODES Database.

3.1.2 Time Zones
The initial release 5.0 of DECODES included database entities for time-zones. These
have been removed in DECODES 5.1 (and later).

DECODES now uses the internal Java time zone definitions. Routing Spec and Site
entities hold references to time zones by storing a “TimeZone ID” recognized by Java.

A list of the time zones supported by Sun Microsystem’s Java 1.4 is provided in
Appendix B. You can also construct a custom time zone by specifying an offset to GMT.
For example, “GMT-06:00” would mean 6 hours behind GMT, corresponding to Central
Standard Time with no support for Daylight time.

3.1.3 Sensor Data Types

Figure 3-2: Data Types ERD.

DECODES can accommodate different systems for representing data types. Each data
type is denoted by a ‘standard’ and a ‘code’. For example “SHEF:HG” could be used for
stream stage values.

The database also contains records that assert an equivalence between two data types. For
example, the SHEF code HG is equivalent to the EPA code 00065. These records allow
the software output data in different coding standards, regardless of the agency
maintaining the DCP.

For example, USGS may prepare platform records using EPA codes. USACE could use
these records without modification, telling DECODES to convert all the data types to
SHEF.

DECODES User Guide 8

3.1.4 Engineering Units
The DECODES database contains a list of commonly-used of standard and English
engineering units. It also contains records that specify conversions between them. Figure
3-3 shows these database entries.

Conversions are performed with one of the following algorithms:

• None (means that EUs are synonyms like cc and ml)
• Linear
• USGS Standard Equation
5th order polynomial.

Figure 3-3: Engineering Units & Converters ERD.

3.2 Properties
There are several places in the model where we left “hooks” for arbitrary information that
may be used by a particular agency. This type of information is stored in a set of
properties associated with some other entity.

DECODES User Guide 9

3.3 Decoding, Formatting, and Converting Specifications

3.3.1 Equipment Models
The EquipmentModel entity captures information about a piece of hardware, such as a
platform, a transport medium, or a sensor.

Figure 3-4: Equipment Model ERD.

The EquipmentModel entity stores information about the model and manufacturer of
these pieces of equipment.

An equipment model may have an arbitrary set of properties. An example of a likely
property might be time-ordering for platforms.

DECODES User Guide 10

3.4 Sites & Site Names

Figure 3-5: Sites and Site Names ERD.

In DECODES, a “Site” is simply a location. This is a little bit different from the concept
in EMIT where a site is synonymous with a platform. In DECODES, a site may contain
more than one platform, and a platform may be reporting sensors at different sites.

Consequently, the Site entity contains attributes that describe the location only.

A site can have many names. For example, USACE typically uses the National Weather
Service HB5 name. USGS uses a numeric site ID. Other agencies may define a “local”
name specific to their organization.

One or more sensors can exist at a site. Normally these are associated directly with the
platform at the same site. However, sometimes a sensor can be associated with a platform
at a different site.

DECODES User Guide 11

3.5 Platform Information

Agency
Description
Expiration

Platform

Name
Description

PlatformConfig

DataType
RecordingMode
RecordingInterval
TimeFirstSample
AbsoluteMin
AbsoluteMax

ConfigSensorPlatformSensor

Name
Value

PlatformSensorProperty

MediumType
MediumId
ChannelNum
XmitTimes

TrasportMedium

1

1...*

10...*

1

0...*

0...*

0...*
10,1

Lat/Lon
State
Region
Nearest City
Timezone
Country

Site

NameType
Name

SiteName

1...*

1 0...*

0,1

Location & Naming Info Platform-Specific Info Configuration Info Shared by Multiple Platforms

ScriptName
ScriptType
FormatStatements

DecodesScript

RawUnitConverter

ScriptSensor

1

0...*

0...*

Script selection by DCP Address &
Channel Num

Figure 3-6: Platform Information ERD.

The “Platform” entity is the central entry point for decoding. The decoder recognizes an
incoming message by its TransportMedium information. For example a GOES DCP has a
unique DCP address. Each TransportMedium record points to a particular “Platform”.

The Platform has a PlatformConfig which determines the sensors installed in the
platform, and the scripts used to decode information from that platform.

Each PlatformConfig has a series of ConfigSensors. Each ConfigSensor has a unique
“sensorNumber”. Each ConfigSensor has a data type and may have a group of properties
(ConfigSensorProperties).

The same PlatformConfig may be used by several platforms. For example, a group of
Sutron 8200s which have identical sensors and message formats may share the same
PlatformConfig.

Platform-specific information about sensors may be stored in the PlatformSensor and
PlatformSensorProperty entities.

A DecodesScript contains the instructions for decoding messages from a platform that
were received over a given transport medium. For example, a platform may have a data
logger and a GOES transmitter. The GOES DCP messages would be decoded with one
script, and the data logger files decoded with a different one. The choice of which script
to use is based on which “TransportMedium” the data was received on.

DECODES User Guide 12

3.6 Performance Measurements

Figure 3-7: Performance Measurements ERD.

“Performance Measurments” contain information describing the message transmission.
For example, a GOES DCP message contains:

• A time stamp
• GOES Channel number
• Message type indication
• Quality indicator (good or parity errors)
• Signal string
Carrier offset

This information is available to the decoder through a special PlatformConfig entity that
is shared by all Transport Media of a given type. For example, there would be one config
for all GOES DCP messages. This config would contain the “sensor” value (listed above)
and decoding instructions for the message header.

DECODES User Guide 13

3.7 Presentation and Unit Conversion

Figure 3-8: Presentation and Unit Conversion ERD.

Refer back to the diagram in the Platform Information section. Note that the
“ScriptSensor” points to a “UnitConverter”. In that case, the UnitConverter translates the
raw value contained in a message into its initial Engineering Units value. A typical case
would be a stage sensor that reports in tenths of inches. The initial unit converter would
convert the value to inches by dividing by 10.

In Figure 3-8, a UnitConverter converts from one EU into another. A library of standard
unit conversions is built into DECODES. This enables you to specify which units you
want to output, regardless of who created the decoding specification.

DECODES User Guide 14

An “EngineeringUnit” belongs to a family (English or metric). It also has a unique
abbreviation (e.g. “mm”) and a full name (“millimeters”). It uses one of the algorithms
listed in Table 3-1.

A “DataPresentation” entity also uses a set of RoundingRules to determine the display
resolution for a given data type. For example, a DataPresentation entity for stage values
might assert that values should be output in inches. and…

• If the value is between 0…1, use 3 decimal places
• If the value is between 1 and 10, use 2 decimal places
If the value is above 10, use 0 decimal places.

DECODES User Guide 15

3.8 Equation Processor Information
Release 5.2 of DECODES does not include executable software for the Equation
Processor. However, the database entities for equation processing and table lookup have
been designed and are presented here.

Figure 3-9: Equation Processor ERD.

The “Equation Processor” that can use arbitrary mathematical expressions to manipulate
the data before it is output. It can be used to modify the output value or to create new
derived output values.

An “EquationSpec” entity executes a series of EqStatements. Statements reference input
variables by sensor name or by parameter codes.

A statement may include a call to a lookup function, thereby referencing an EqTable. A
common use for this is in stage-to-flow conversions.

DECODES User Guide 16

Figure 3-10: Lookup Tables ERD.

A lookup table is takes an input value and looks up an output value. A lookup table has a
series of points (‘x’ is input, ‘y’ is output).

The ‘lookupAlgorithm’ attribute specifies how the lookup is done:

• Linear interpolation
• Logarithmic interpolation
• Truncating
Rounding

DECODES User Guide 17

3.9 Routing Specification Information

Figure 3-11: Routing Specification ERD.

DECODES uses a “Routing Specification” to determine:

• Where to get data from (Data source entities)
• Which data to get (Network Lists)
• How to format data for output
Where to send it once it is decoded and converted

A “NetworkList” in DECODES is analogous to a network list used by DOMSAT
systems. It is simply a list of transport media (i.e. DCP addresses or NESS IDs).

DECODES User Guide 18

4. Installing or Upgrading DECODES
There are two types of DECODES installations:

1. A New Installation – if you’re installing DECODES to a particular computer for the
first time, follow the instructions in sections 4.1 to install Java, then 4.2 to install
DECODES.

2. An Upgrade Installation for sites that are running a previous version of DECODES.
Consider upgrading to the latest version of Java, as described in section 4.1. Then do
the DECODES upgrade as described in section 4.3

4.1 Installing Java
DECODES software is made up of Java archives and scripts for various operating
systems. To run the Java code you will need to install Sun Microsystem’s Java Runtime
Environment version 1.3.1 or higher. This is available as a free download from:

http://www.javasoft.com

Download the “J2SE” Standard Edition. The latest stable version at the time of this
writing is 1.4.1_03. You may download the “JRE”, or if you are interested in doing Java
development, you can download the “SDK” (Software Development Kit), which contains
the JRE plus several development tools.

4.1.1 Installing Java on Windows
Follow these instructions to install the SDK on Windows 2000, NT or XP:

• Download the SDK release, as described above. The current version file name is
j2sdk-1_4_1_03-windows-i386.exe. Download the file to your desktop or a
temporary directory on your hard disk.

• Double click the icon to start the installation procedure.
• Read and agree to the Sun Microsystems License.
• Choose a destination folder for the Java SDK, or accept the default shown.
• Complete the release via the dialogs.

After installation, open a DOS window and type the command:
java -version

You should see a version message matching the release that you installed. If you see a
message that ‘java’ is not recognized as an internal or external command, etc; then Java is
NOT installed properly. Review the installation instructions above.

DECODES User Guide 19

4.1.2 Installing Java under Red Hat Linux
If you want to run DECODES on a machine that is already set up as an LRGS, Java
should already be installed. If not, download the JDK for Linux from the Javasoft
website, it will be stored in a file named:

j2sdk-1_4_0_03-linux-i586-rpm.bin

Note -- Release 1.4.0_01 is current at the time of this writing -- the release numbers may
be different by the time you read this. Make a note of the release you download and make
substitutions to the file and directory names in these instructions.

Login as ‘root’ and move this file to the /root directory. Then run the shell script to
unpack the RPM (RedHat Package Manager) file. Finally, install the RPM.

mv j2sdk-1_4_0_03-linux-i586-rpm.bin /root
cd /root
sh j2sdk-1_4_0_03-linux-i586-rpm.bin
(answer the questions about licensing agreement)
rpm j2sdk-1_4_0_03-fcs-linux-i386.rpm

This will result in the Java release installed in the following directory.
/usr/java/j2sdk1.4.0_03

We recommend that you set up a symbolic link pointing to this directory called
/usr/java/jdk. You can do this as follows (note, you must be root to do this):

cd /usr/java
ln -s j2sdk1.4.0_01 jdk

Configure your Login Account for Java
You need to place the bin directory in the Java release into your PATH variable:

export PATH=/usr/java/jdk/bin:$PATH

Place this command in your .bash_rc file to have it done every time you login.

Verify that the path is properly set by typing:
java -version

DECODES User Guide 20

4.2 Installing The Complete DECODES Package
The complete DECODES install is found in a ZIP file with a name of the form:

 decodes-VERSION.zip

For example, the latest release is 5.4, so the ZIP file name is decodes-5.4.zip.

Download the zip file. You can find the latest version of DECODES on the “Download”
page at http://www.ilexeng.com.

The complete DECODES Release contains:

• This document in PDF form
• A ‘bin’ directory containing executable scripts and Java Archive (JAR) files.
• An ‘edit-db’ directory hierarchy containing the setup information and a set of sample

data files.
• An empty ‘installed-db’ directory
• A directory called ‘sample-data’ containing sample DCP messages that you can use to

interactively decode inside the Database Editor GUI
• A directory called ‘to_import’ containing EMIT SDF and Network List files from 5

different USGS and USACE districts. These files have been used to test DECODES.
You can import this data into your edit database while you are learning DECODES.

An ‘sql-samples’ directory containing setup scripts and other files to get you started using
DECODES with a relational database (see Chapter 5).

The Windows-specific release also contains the JRE for Windows.

Create a directory for the DECODES installation. This will be called the
“DECODES_INSTALL_DIR” in subsequent manual sections. Extract the Zip file there.

Unix Example: Suppose you chose to install the DECODES software under
/usr/local/decodes, then you would enter the following at your shell prompt:

cd /usr/local
mkdir decodes
cd decodes
unzip decodes-5.2.zip .

Windows Example: Suppose you chose to install the DECODES software under
C:\decodes. After creating this directory run WinZip and extract the contents of the
release into this directory.

CAUTION! Some versions of the unzip program, most notably the one included with
XP, will try to create an intermediate directory with the same name as the zip file. YOU
DO NOT WANT THIS. Check that you see the above listed files directory under the
install directory.

DECODES User Guide 21

4.2.1 Setup DECODES Runtime Environment
You need to create on new environment variable on your system:

DECODES_INSTALL_DIR - should be a hard-coded path to the directory where you
unzipped the release.

You also need to add the bin directory under DECODES to your PATH variable.

On UNIX systems: Modify your startup script, such as .profile, .bash_profile, etc.

On Windows Systems: From the Start menu, select Settings - Control Panel. Double
click on “System”. Click on the “Advanced” tab and push the button labeled
“Environment Variables…”. You see a dialog as shown in Figure 4-1. Note the settings
for DECODES_INSTALL_DIR and Path.

Figure 4-1: Windows 2000 Environment Variable Dialog.

Previous releases of DECODES used a file called “decodes-env” or “decodes-env.bat”
that can be found under the DECODES release. If you set the two variables as described
above, you no longer need these files.

DECODES User Guide 22

4.2.2 Setup your DECODES Properties
Also contained in the DECODES_INSTALL_DIR directory is a file called
decodes.properties. This file is a standard Java properties file (name=value pairs, one per
line). The valid settings are shown in Table 4-1. “Default Value” is the value that will be
used by the software if the property is missing from the file.

The DECODES distribution includes a sample decodes.properties file for use with the
sample XML database (as the “editable” database). You should be able to get started
using DECODES with this sample properties file; it’s also located in the
DECODES_INSTALL_DIR directory.

Property Name Default Value Description

DatabaseType “xml” This is the type for the installed database. The
value should be either “XML” or “SQL”. In the
future, we hope to add “XMLURL”, for an XML
database accessible via the Internet.

DatabaseLocation N/A This is the location for accessing the installed
database. For “XML”-type databases, this is a
directory name containing the DECODES directory
tree.

For “SQL”-type databases, this is a JDBC database-
url. See section 5.2 for more information about the
format of this value.

For “XMLURL”-type databases, this is a URL.

SiteNameTypePreference NWSHB5 Specifies the “preferred” type for DCP names. By
default this is the Handbook-5 standard used by the
National Weather Service.

EditDatabaseType “xml” The is the type for the Editable database. The same
values allowed for the DatabaseType property are
allowed here; viz “XML” or “SQL”.

EditDatabaseLocation N/A This is the location for accessing the editable
database. The same values allowed for the
DatabaseLocation property are allowed here.

EditOutputFormat “Human-Readable” Output format used to test decoding scripts within
the editor.

EditPresentationGroup N/A Presentation group used to format samples when
testing decoding scripts within the editor.

EditTimeZone “UTC” Time zone used when decoding sample data within
the editor. Using UTC makes it easy to correlate
sample times with the DCP message time stamp.

jdbcDriverClass org.postgresql.Driver If you use a SQL database other than PostgreSQL,
specify the full Java class name of the JDBC driver
here.

Table 4-1: DECODES Property Values.

DECODES User Guide 23

4.3 Upgrade Installation
If you are upgrading from an earlier version, download the DECODES upgrade Zip file
from the Ilex web site. The upgrade Zip file will have a name like

decodes-5.4-upgrade.zip

This Zip file contains:

• This document in PDF form
• A ‘bin’ directory containing executable scripts and updated Java Archive (JAR) files.
• An ‘edit-db’ directory hierarchy containing the latest version of the setup XML files,

as described above (see section 3.1).
• An ‘sql-samples’ directory containing setup scripts and other files to get you started

using DECODES with a relational database (see Chapter 5 below).

To install the upgrade, simple unzip the file over the same location that DECODES was
previously installed.

Note that the upgrade does not contain the environment file, the properties file or the
initial database files. Therefore it is safe to install the upgrade without fear of losing your
existing DCP configurations.

DECODES User Guide 24

5. Using DECODES with an SQL Database
As of version 5.3 of DECODES, The preferred medium for your editable database is
SQL. The advantage is that SQL databases are accessible over the network. Hence you
can run your database editor and routing specs locally, on a windows PC, and access a
SQL database that resides on a central office server.

Although DECODES should work with any RDBMS that supports JDBC, at the time of
this writing, it has only been tested with PostgreSQL, a free DBMS that runs on most
operating systems, and is included in the Red Hat Linux Release.

5.1 PostgreSQL
PostgreSQL was chosen for our initial implementation for many reasons:

• It’s free.
• It runs on a wide variety of different machines. One of the key features of

DECODES itself is that it is very platform-independent. By choosing PostgreSQL,
we continue that tradition.

• It is extremely well documented.
It’s powerful, mature, and scalable.

This section will give a brief description of how to setup PostgreSQL on either a Linux or
a Windows computer. For other types of computers, or for more detailed instructions,
consult the documentation that comes with PostgreSQL. Two excellent sources of
information are:

• The PostgreSQL web site: http://www.postgresql.org/, and
Practical PostgreSQL; John C. Worsley and Joshua D. Drake, O’Reilly & Associates,

Inc, 2002.

5.1.1 Installing PostgreSQL
You may not need to install PostgreSQL. If you are using Linux, then PostgreSQL may
already installed on your system. Try entering the following command:

psql -V

If this responds with version information about the PostgreSQL, then you’re in luck. If
not, find the postgreSQL RPM packages in your Red Hat distribution or on the Red Hat
web site and install them.

For systems other than Red Hat Linux and Windows, consult the detailed instructions in
the Administrator’s Guide, which is available online at

http://www.postgresql.org/idocs.

DECODES User Guide 25

5.1.1.1 Installing PostgreSQL on Windows 2000, NT, or XP
There is an open-source package called “Cygwin” containing many Unix-like tools that
can run under Windows. PostgreSQL is included in Cygwin. You can get Cygwin from:

http://www.cygwin.com/

Unfortunately however, the PostgreSQL implementation in Cygwin is, at the time of this
writing, incomplete. Look inside the release (wherever you installed it) for the file
usr/doc/postgresql-7.2.1/FAQ_MSWIN. This file contains additional instructions that
you’ll need to follow to get a PostgreSQL server running under windows. In particular,
note the section on installing cygipc. You will need to go to the web site:

www.neuro.gatech.edu/users/cwilson/cygipc/index.html

Future releases of Cygwin may contain a fully-functional version of PostgreSQL, so
check the release notes for details.

5.1.2 PostgreSQL Startup and Initialization
On Linux, PostgreSQL will create a default database cluster and environment the first
time it is started. These instructions assume that you will use this default environment for
the DECODES database.

If you want to use a different cluster, see the documentation on the ‘initdb’ command.

To start PostgreSQL manually, login as root and:
cd /etc/init.d
./postgresql start

To have PostgreSQL started automatically when the system boots:
chkconfig --level 2345 postgresql on

Verify that the server is running by starting a ‘PSQL’ session on the default “template1”
database. Again, do this as root:

psql -U postgres template1

DECODES User Guide 26

5.1.2.1 Start the PostgreSQL Server on Windows 2000 or NT
On NT or Windows 2000 systems you will first need to start the Cygwin IPC daemon. To
do this, open a Cygwin window and type:

ipc-daemon &

After that, you can immediately start the PostgreSQL server with the command (again,
entered as user postgres)

postmaster -i -D /home/postgres

If you picked a different directory location for your database cluster, use that as the
argument to the “-D” option. This starts the server in a foreground process. You should
see several response messages on the shell window. If everything is working, one of the
last messages should be:

DEBUG: database system is ready

5.1.3 Create PostgreSQL Administrative Account
The next step is to create a PostgreSQL user for DECODES database administration. This
account will be used to create the DECODES database, and to create other user accounts.
Note that this is different from a Unix (or Windows) user account.

We recommend that you create a user account called “decodes_adm”. Some of the scripts
(and this manual) assume that this user has been created and has complete permissions on
the DECODES database.

Login as root, and execute the following commands
su - postgres
createuser -P decodes_adm

This will ask if you want to allow this user to be able to create databases and/or to create
new users. Answer “yes” to both of these questions.

5.1.4 Setup PostgreSQL Security
PostgreSQL security is controlled by the file “pg_hba.conf” in the directory where your
database is located. By default on a Linux system this will be in /var/lib/pgsql/data. This
section describes how to establish simple password-based authentication. This is
sufficient for a network that is secured from the internet by firewall(s). There are other
ways of configuring authentication that are more secure. Consult the PostgreSQL
documentation for details.

To allow database connections from users operating on the local machine add these lines
to the pg_hba.conf file:

local all password
host decodesedit 127.0.0.1 255.255.255.255 password

DECODES User Guide 27

The first line allows local connections to any database that use Unix domain sockets. The
second line allows TCP connections to the ‘decodesedit’ database that come from the
loopback device (127.0.0.1).

The following line will allow connections to all databases from the specific host
(192.168.1.50):

host all 192.168.1.50 255.255.255.255 password

The following line will allow connections to the ‘decodesedit’ database from any host on
the 192.168.1 network:

host decodesedit 192.168.2.0 255.255.255.0 password

You need to create PostgreSQL user accounts for all users that will edit the DECODES
editable database. Use the ‘createuser’ command for this. These users do not need to be
able to create databases or new users.

You will also need to configure the PostgreSQL server to answer incoming TCP
connections. To do this modify the file /var/lib/pgsql/data/postgresql.conf. Add a line at
the end as follows:

tcpip_socket = true

5.2 How DECODES Does Database Authentication
DECODES programs are written in Java. They use JDBC to access the SQL database.
When a program starts, it needs to open a JDBC connection by supplying a username and
password to the database server. The programs will look in a file called “.decodes.auth”
in your home directory. This file contains your username and an encrypted version of
your password.

You must create this file in your home directory and set the permissions so that only you
can read or write it:

cd
touch .decodes.auth
chmod 600 .decodes.auth

Then run the ‘setDecodesUser’ script will place your database username and password
into this file. For example, if your database account name is johnwarfen and your
password is lectroid, type:

bash
setDecodesUser johnwarfen lectroid
^D

As described in the section above on PostgreSQL authentication, your database account
is not the same as your Unix login account. Indeed, you could have several Unix users
sharing the same database account for simplicity.

Once set, the username and password will remain in effect for you until you change it.

DECODES User Guide 28

5.3 Configure DECODES for an SQL Editable Database
The “decodes.properties” file determines the type and location of your editable and
operational (a.k.a. “installed”) database. To switch to SQL, you will modify the
properties “EditDatabaseType” and “EditDatabaseLocation”.

Change EditDatabaseType to “sql”. Change EditDatabaseLocation to a JDBC URL that
specifies the name and host of your database. The syntax for the location URL would be:

jdbc:drivername:databasename

…where drivername is the name of the JDBC driver (e.g. “postgresql”) and
databasename is in one of the following forms:

• dbname For a local database on the default port.
• //host/dbname For a database on the specified host at the default port.
//host:port/dbname For a database on the specified host at the specified port.

Example: For a PostgreSQL editable database called “decodesedit” on host “mylrgs”,
place the following the decodes.properties file:

EditDatabaseType=sql
EditDatabaseLocation=jdbc:postgresql://mylrgs/decodesedit

For the editable database, we recommend using the database name “decodesedit”. Some
of the scripts, and this manual, assume that this is the case.

Also in the “decodes.properties” file, you will find a setting that specifies the full Java
class name of the JDBC driver. The setting is called “jdbcDriverClass” and its default
value is “org.postgresql.Driver”. If you use a database other than PostgreSQL, determine
the name of the driver class, and set this value as appropriate.

5.4 Creating the DECODES Editable Database
After you have configured database authentication (as described in section 5.1.4 for
PostgreSQL, and run the setDecodesUser account (as described in section 5.2), and set
your decodes.properties file (as described in section 5.3); then you are ready to create and
initialize the DECODES database.

The script createDecodesDb.sh will do several things:

• Create a new database called “decodesedit”.
• Use the SQL interpreter to define the tables in the database.
Runs the dbimport Java program to populate the database with enumerations, EU

conversions, and data types.

The script has been written and tested using the PostgreSQL ‘psql’ program. If you are
not using PostgreSQL, or if your database is not called ‘decodesedit’, you will need to
modify the script accordingly.

DECODES User Guide 29

The script initialized several tables from XML files found in the directory “./edit-db”. For
this reason you must run the script in the directory where you installed DECODES:

cd $DECODES_INSTALL_DIR
createDecodesDb.sh

You will see several messages printed to the screen as the script does its work. If any
errors occur, descriptive information will be printed. If errors are encountered during the
‘dbimport’ phase of the script, additional information will be printed in the file “util.log”.

If you are running the script a second time, you may see error messages from the create-
database or table-definition phase saying that the database or table already exists. It is
safe to ignore these warning messages.

If you really want to delete the database and start with a clean slate, for PostgreSQL,
issue the command:

dropdb decodesedit

CAUTION: This command will delete the database and all data in it!

DECODES User Guide 30

5.5 Importing Data from your old XML Database
If you already have an old XML database and you want to import your platforms,
configs, etc., read this section.

The ‘dbimport’ script takes XML filename on the command line and imports them into
your editable database. So, after following all the instructions in the previous section, you
can issue any of the following commands.

Go to the directory where the old XML editable DB was:
cd $DECODES_INSTALL_DIR/edit-db

Import all my equipment model records:
dbimport equipment/*.xml

Import all my Site records:
dbimport site/*.xml

Import all my PlatformConfig records:
dbimport config/*.xml

Import all my Platform records. Note: Don’t import
the file “PlatformList.xml”
dbimport platform/p*.xml

Import all my DataSource records:
dbimport datasource/*.xml

Import all my Presentation Groups Note: the init
script will get “SHEF-English”. You only need to do
this if you have created other presentation groups.
dbimport presentation/*.xml

Import all my network lists:
dbimport netlist/*.xml

Import all my RoutingSpec records:
dbimport routing/*.xml

DECODES User Guide 31

5.6 Verify that the Database Works
You should now be able to run “dbedit”. The editor should come up. You should see all
of the data that you had previously defined in the XML database.

It should now be transparent to you that you are using a SQL database. All the scripts
described in other sections of this manual should function normally:

• emitimport To import EMIT and Legacy DECODES SDF Files
• dbimport To import XML files from backups or other DECODES sites.
• pxport To export platform XML files
• dbedit To run the GUI Database Editor
• dbinstall To copy all “production” level entities to the installed database.
• markproduction To mark all entities in the editable database as “production” level.
• msgaccess To interactively view raw and decoded DCP messages
• nl2lrgs To extract a network list into an LRGS compatible ASCII file.
• rs To run a routing specification.

DECODES User Guide 32

6. Maintaining the DECODES Database
Take a moment to refer back to Figure 2-2. Note that the Editable Database is separate
from the Installed database. This section describes tools that you will use to:

• Import EMIT and pre-release-5 DECODES files into the editable database.
• Import Platform and other database XML files from other organizations using

DECODES 5+.
• Create a new Editable database from scratch.
• Install components from the Editable Database to the Installed Database

6.1 Initializing Your Editable DECODES Database
This section describes how to initialize and populate your first editable database.

6.1.1 Standard XML Setup Files
If you are using an SQL database as your editable database, refer back to Chapter 5. This
section is for the older XML editable database.

The setup files contain collections of information that probably does not need to change
from one organization to another. Currently the only way to edit this information is to use
a text editor to modify the XML files.

The files are all found under $DECODES_INSTALL_DIR/edit-db:

datatype/DataTypeEquivalenceList.xml: Described in section 3.1.3, this file contains
definitions for common SHEF and USGS/EPA numeric type codes. You may want to edit
this file if you use uncommon or custom type-codes.

enum/EnumList.xml: Described in section 3.1.1. You will probably not need to edit this
file unless you are adding custom Java code to the DECODES system.

eu/EngineeringUnitList.xml: Described in section 3.1.4, this file contains records which
describe most commonly-used English and Metric units. It also contains conversion
algorithms & coefficients to convert between units that measure the same physical
parameter.

DECODES User Guide 33

6.1.2 Importing Data from EMIT or Pre-Release-5 DECODES
Synopsis:

emitimport <options> file1 file2 . . .

Options:
-t name-type Sets the preferred site-name type to the specified value. The

default is NWSHB5.
-d debug-level Level should be 1, 2, or 3 from the least to most verbose.
-v Validate only: Do not actually import any data. Just issue

warnings about conflicts and parsing errors.
-x Instead of importing into your editable-database, create an

XML file containing the converted data. With this option,
the program is a translator rather than an importer.

-o Keep old records on conflict. Default is to overwrite old
records with new ones.

Description:
This program can accept SDF files (SDF stands for Site Device File) from EMIT or pre-
release-5 DECODES. It can also accept network list files from LRGS or DRS systems.

It creates new DECODES database records and places them into the editable database.

This program writes log messages to a file called “util.log” in the current directory.

Examples:
DECODES contains several sample files in the to_import sub-directory. To import these
files type:

cd $DECODES_INSTALL_DIR
emitimport to_import/*

DECODES User Guide 34

6.1.3 Importing XML Data from Other DECODES Sites
Synopsis:

dbimport <options> file1 file2 . . .

Options:
-d debug-level Level should be 1, 2, or 3 from the least to most verbose.
-v Validate only: Do not actually import any data. Just issue

warnings about conflicts and parsing errors.
-o Keep old records on conflict. Default is to overwrite old

records with new ones.

Description:
This program accepts XML files that were created by the export utilities described in
section 6.4. Imported records are added to your editable database.

This program writes log messages to a file called “util.log” in the current directory.

Examples:
pxport –a > platform-dump.xml
...at a different organization
dbimport platform-dump.xml

6.2 Interactively Editing the Database
The script ‘dbedit’ starts the interactive Database Editor GUI. See section 7 for
instructions on using this program.

DECODES User Guide 35

6.3 Updating the Installed Database
Synopsis:

dbinstall <options>

Options:
-d debug-level Level should be 1, 2, or 3 from the least to most verbose.

Description:
The purpose of this program is top copy records that are ready for production from your
Editable database into your Installed database.

This program writes log messages to a file called “util.log” in the current directory.

The dbinstall program copies all of the setup information from your editable database
into your installed database.

If you examine the diagrams for the various database entities in you will see
“isProduction” parameters in the following record types:

• EqTable
• EquationSpec
• Platform
• PresentationGroup
RoutingSpec

For these record types, only the entites where the “isProduction” value is true will be
copied. You can set this value for selected records in the Database Editor GUI (See
section 7)

As a time-saving alternative, special script called ‘markproduction’ has been prepared.
This script sets the isProduction flag to true for all records in the editable database.

Examples:
...after importing records to the editable database
dbinstall

DECODES User Guide 36

6.4 Exporting Platforms to XML Files
Synopsis:

pxport <options>

Options:
-d debug-level Level should be 1, 2, or 3 from the least to most verbose.
-n network-list Export platforms referenced by the named network list.
-s site-name Export the platform record for a specific site.
-a Export all platforms.
-c config-name Export platforms that use a given platform configuration.
-i Export from the installed database. The default is to export

from the editable database.

Description:
This program writes XML records containing platforms (and all subordinate records such
as site, config, script, and transport media). Records are written to standard output.

Multiple instances of the above options are acceptable. See examples below.

This program writes log messages to a file called “util.log” in the current directory.

Examples:
Dump all platforms to a single XML file:

pxport –a > platform-dump.xml

Export three specific sites:
pxport –s TCLG1 –s HUDG1 –s LHMG1 > threesites.xml

Export platforms referenced by Atlanta’s network list:
pxport –n Atlanta > Atlanta-platforms.xml

DECODES User Guide 37

6.5 Other Database Utilities

6.5.1 Creating the Platform Cross-Reference File
If you look in the edit-db/platform directory you will see that each platform is stored in a
separate file named with a ‘p’ followed by a numeric ID assigned to the platform.

Each database assigns an arbitrary numeric key ID field to platforms as they are added to
the database. For the most part this key is invisible to you and you shouldn’t have to
worry about it.

Also in this directory is a file called PlatformList.xml. This file is a cross reference that
maps site names, configuration names, and DCP addresses to each platform.

If you suspect that your cross reference file has been corrupted, you can rebuild the
PlatformList.xml file directly. This can happen if you add files to the platform directory
using tar, zip, cp, copy, etc.

To run the program type:
java decodes.xml.CreatePlatformXref database-root

where ‘database-root’ is the path to the top of the XML database. For example, if you
want to build the cross reference in your editable database, and you installed DECODES
in /usr/local/decodes, type:

java decodes.xml.CreatePlatformXref /usr/local/decodes/edit-db

DECODES User Guide 38

6.5.2 Creating LRGS-Style Network List Files
The LRGS and DRS support an alternative file format for network lists. LRGS Network
Lists are ASCII files containing a list of DCP addresses, one per line:

DCP-Addr:DCP-Name Comment…

The line starts with a (8 hex-digit) DCP address, followed by a colon, followed by a
blank-delimited DCP Name, followed by a free-form comment field.

When you run a routing spec that uses an LrgsDataSource, the software converts any
network lists you specified into the above format, and sends them to the server. The
LRGS DCP Data Server (DDS) then only sends the messages from those platforms.

Older SCO-DRS servers do not support network list transfers. If your data source is a
SCO DRS, do the following:

1. Add a property called “sendnl” set to the value “false” to the data source record.
2. Generate the LRGS-style network list file using the “nl2lrgs” utility (see below).
3. Use FTP or some other file-transfer mechanism to copy the list onto the SCO DRS.

Place it in the ‘drs’ home directory (/usr/drs).
4. Repeate steps 2 and 3 every time the list is modified.

The “nl2lrgs” utility
nl2lrgs [-e] list1 list2 ...

The “nl2lrgs” will create a file in the current directory for each list specified. The file will
have the same name as the network list, with a “.nl” extension.

The “-e” argument forces the utility to pull the network list from your editable database.
The default is to use the installed database.

DECODES User Guide 39

7. The DECODES Database Editor
Synopsis:

dbedit <options>

Options:
-d debug-level Level should be 1, 2, or 3 from the least to most verbose.

The editor starts as shown in Figure 7-1.

Figure 7-1: Database Editor Platform List Screen.

DECODES User Guide 40

7.1 GUI Organization
A row of Tabs appears along the top corresponding to the different kinds of records in the
database (Platforms, Sites, Configs, etc.)

7.1.1 List Panels in General
Underneath each of those tabs you will see a “List” tab. In Figure 7-1, the Platform tab is
selected, so we see the List of platforms.

Click on the column header in the List tab to sort the elements by the columns value. In
Figure 7-1 the ‘Site’ column header was clicked, so we see elements sorted by Site name.

Along the bottom of the List tab you see buttons with the following labels:

Open To edit a database record, click on it in the list and press Open

New Press new to create a new database record.

Copy To copy a database record, click on it in the list and press Copy. You will be
prompted for a name for the copy.

Delete To delete a database record, click on it in the list and press Delete.

Wizard This is a placeholder for future features. We plan to implement wizard dialogs
to guide you through creating various types of database entries. Currently the
only ‘Wizard’ implemented is under the Configs tab. This Config wizard is
simply a prototype that doesn’t do anything currently.

Help Coming soon: This button will bring up a context sensitive help screen.

7.1.2 Edit Panels in General
When you Open a record, a new tab appears to the right of the list tab. For example,
Figure 7-2 shows the result after we do the following:

• Select the Configs top-level tab.
• Select the record HA555A-GA-008 from the list
Press the Open button.

Separate edit screens have been implemented for each type of database record. In this edit
screen you would change all of the parameters for HA555A-GA-008.

Notice the bottom of the Edit Panel. The Commit button writes the record back to the
database. You can do this at any time. It does not close the panel.

The Close button closes the edit panel. If you have made changes to the record you will
be asked if you want to save them.

7.1.3 Exiting the Editor
You can exit the editor by selecting File-Exit or by closing the window. If you have edit
panels open in which changes have not been saved, you will be forced to close these
panels before you can exit.

DECODES User Guide 41

Figure 7-2: Platform Config Edit Panel.

DECODES User Guide 42

7.2 The Platform Edit Panel
The platform edit panel is shown in Figure 7-3.

Every platform is associated with a site. Press the Site Choose button to bring up a dialog
in which you can select a site.

Every platform is associated with a configuration. Press the Config Choose button to
make this association. Be careful: Sensors are defined in the configuration.

The Owner Agency and Description are simple free-form type-in fields. They are
informational and not used by other DECODES software.

If you want this platform to be placed into the ‘install-database’ by the dbinstall utility
(see section 6.3), check the ‘Production’ checkbox.

Platforms change over time (sensors are added, removed, etc.). You can capture a
historical version for a platform by pressing the ‘Make Historical Version’ button. Each
historical version is a separate record with a specified Expiration time.

The Platform Sensor list is used for two purposes:

• If a sensor on this platform is actually located at a different site, you can associate the
sensor with a site. In most cases, however, the “Actual Site” field is blank, meaning
that this sensor is at the same site as the platform.

You can associate arbitrary properties with a sensor to be used by downstream
DECODES modules. In the example shown, the USGS DBNO and DDNO are
associated with each sensor.

Transport Media define how the data from this platform is retrieved. The data may need
to be decoded differently depending on whether it was received over DOMSAT, DRGS,
or EDL file, even though it came from the same platform.

The example shown shows two transport media for GOES-Self-Timed on channel 159
and GOES-Random on channel 129.

You can add or delete transport media by clicking the buttons to the right of the list.
Clicking Edit brings up the dialog shown in Figure 7-4.

Note that in this dialog, you associate each transport medium with the name of a “Script”
which will be used to decode the data. Scripts are discussed more in section 7.4.

DECODES User Guide 43

Figure 7-3: Platform Edit Panel.

Figure 7-4: Transport Medium Edit Dialog.

DECODES User Guide 44

7.3 The Site Edit Panel
Figure 7-5 shows an example of the Site Edit Panel. Recall that in DECODES, a site is
simply a location with one or more names. The example shows a site near Athens, GA
that has three names: A USGS station number of 02217500, a NWS Handbook 5 name of
ATHG1, and a DRGS name of “ATHENS”. On the right are type-in fields for descriptive
information about the site.

Figure 7-5: The Site Edit Panel.

DECODES User Guide 45

7.4 The Platform-Config Edit Panel
Figure 7-6 shows an example platform configuration edit panel for a DCP maintained by
the USGS.

Configurations are associated with hardware. In this case it is a Handar model 555A
DCP. Press the Equipment Model Select button to change this association.

As a convenience, this panel shows you the current number of platforms that are using
this configuration. This may be important if you plan to make modifications. Your
modifications will effect all platforms using the config.

The center of the panel contains a list of Sensors defined in this configuration. Using the
buttons to the right, you can Delete, Edit, or Add sensors in this list. If you edit or add a
sensor, you will see the dialog shown in Figure 7-7.

At the bottom of the panel you see a list of decoding scripts. Decoding scripts do the
work of extracting sensor samples from your raw message. Using the buttons to the right,
you can Delete, Edit, or Add scripts in this list. If you edit or add a script, you will see the
dialog shown in Figure 7-8

DECODES User Guide 46

Figure 7-6: Platform Config Edit Panel.

DECODES User Guide 47

Figure 7-7: Edit Config Sensor Dialog.

DECODES User Guide 48

7.4.1 The Decoding Script Edit Dialog
This dialog, shown in Figure 7-8 is one of the most important screens in the editor.
Anyone who has worked with EMIT or older versions of DECODES will tell you that the
hard part is getting the scripts right.

At the top of the screen you see a list of Format Statements, each with a unique label.

The Order of Format Statements is Important! The script will always start with the
first statement in the list. You can select a statement and press the Up or Down buttons to
move statements around in the list. You can use the Add button to add a new statement at
the end of the list. The Delete button will ask you for confirmation before deleting the
selected statement.

In the next area of the screen you see a list of sensors. In this list you assign units to each
sensor and a raw conversion algorithm. In the example shown the user has selected the
algorithm for Battery voltage. Linear conversion (y = Ax + B) has been selected for both
parameters. You then type the coefficients directly in the table.

In the Sample Message area you can load raw data and interactively try to decode it using
your format statements and conversions. The Load button prompts you for a file
containing the raw data. The Clear button clears the text area. You can also manually
type into the text area.

If you have LRGS Client Software loaded, there is an even easier way to load sample
data. Bring up the LRGS Message Browser and using the search criteria to find and
display a message from the desired platform. Now simply select, copy, & paste the data
into the Sample Message area of the dialog.

Press the ‘Decode’ button to apply the format statements to the raw data. The results are
shown in the Decoded Data window.

The syntax of format statements is described in section 8, The DECODES Format
Language.

DECODES User Guide 49

Figure 7-8: Decoding Script Edit Dialog Showing Interactive Decoding.

DECODES User Guide 50

7.5 The Equipment-Model Edit Panel
Figure 7-9 shows and example of this dialog. Most of the information here is descriptive
in nature and not used by downstream DECODES modules.

An exception to this is the “DataOrder” property. If you place this property into an
Equipment Model record with the value D (for Descending) or A (for Ascending), then
the decoder will apply this to data from platforms using a configuration assigned to this
equipment model.

Again the association goes like this: Platform Config Equipment Model

Figure 7-9: Equipment Model Edit Dialog.

DECODES User Guide 51

7.6 The Presentation Group Edit Panel
An example of this panel is shown in Figure 7-10.

A Presentation Group determines how data will be formatted for output. This includes:

• What engineering units will be used on output.
Numeric rounding rules to apply to each sample value

Look at the example. The first line in the Presentation Elements table says to display HG
(stage) values in units of ‘ft’, or feet. The second line says that PC (precipitation) values
are to be displayed in inches.

If you leave the Units field blank, then the value will be output in whatever values are
decoded by the script. In other words, no conversion on output will be done.

The third line has a qualifier: It says that HR (reservoir height) values recorded on a
Campbell Scientific CR-10B recorder should be displayed in inches. Hence you can get
very fined-grained control over display settings.

Finally, notice the last line in this table is for data type “SHEF-PE:*”. The ‘*’ means any
data type that is not explicitly listed elsewhere.

Notice that in the example the first line of the Presentation Elements table is selected (i.e.
highlighted). When you select a presentation element, the Rounding Rules table at the
bottom shows the rules to apply to those parameters.

For each rounding rule you specify a maximum value, significant digits, and maximum
number of (fractional) decimal digits. Hence, the resolution can change over the possible
ranges of values.

DECODES User Guide 52

Figure 7-10: Presentation Group Edit Panel.

DECODES User Guide 53

7.7 The Data Source Edit Panel
Figure 7-11 shows a data source that pulls data from the DROT machine operated by
NESDIS at Wallops, VA. Note the properties that are appropriate for LRGS data sources:

• host: host name or IP address of the LRGS or DRS
• username
port

Note that in this figure the Group Members list is disabled. LRGS data sources are not
groups.

Figure 7-11: Data Source Edit Panel showing LRGS Data Source.

DECODES User Guide 54

Figure 7-12 shows an edit panel for a hot-backup group. In the example shown, the
source will try to pull data first from Wallops-DROT. If unsuccessful, or if it fails in mid-
stream, it will automatically switch to another member of the group.

When making a connection, group members are always tried in the order they are
specified in the list.

Figure 7-12: Data Source Edit Panel showing Hot Backup Group.

DECODES User Guide 55

7.8 The Network List Edit Panel
Figure 7-13 shows the StPaul Network List being edited.

A network list is a collection of identifiers for a particular transport medium type. If the
transport medium type is “GOES”, then the TransportID is a DCP address (as shown).
Currently this is the only type of network list in use.

You can add or remove sites from the list using the buttons to the right of the list.

You can click in the headers of the list to cause the list to be sorted by Transport ID, Site
Name, or Description.

Figure 7-13: Network List Edit Panel.

DECODES User Guide 56

7.9 The Routing Specification Edit Panel
We saved Routing Specification until last because they tie together all of the other entity
types. Figure 7-14 shows a sample routing specification being edited.

The semantics of each field are covered at length in section 8. For now the example
shows the following:

• A Routing Spec called “Atlanta-lrgs-input”
• It will read data from the data source called “LrgsGroup” that we saw in Figure 7-12.
• It will send data (consumer) to a pipe to the standard output (stdout).
• It will format data compatible with the EMIT ASCII output format.
• Sample times will be converted to EST
• Data will be presented according to the “local-presentation” group that we saw in

Figure 7-10.
• Every time the routing-spec is run, data will be pulled from a time range of “now – 1

day” until “now”.
• There is a property defined called “OldChannelRanges” set to true. This causes the

old rule to be in effect that GOES channels less than 100 are self-timed and over 100
are random.

• Only data from platforms referenced in the “Atlanta” Network List will be processed.

DECODES User Guide 57

Figure 7-14: Routing Specification Edit Panel.

DECODES User Guide 58

8. The DECODES Format Language
DECODES uses Fortran-like format statements to interpret data received from a
recording device. A Decoding Script is made up of one or more format statements. These
format statements consist of two parts:

1. a label to identify the format, and
2. a statement containing a sequence of format operations.

Within a statement, the format operations are separated from each other by commas. You
enter format statements within the Decoding Script Edit Dialog, described in section
7.4.1.

8.1 Execution of Format Statements by a Routing Spec
This is what happens when a routing spec decodes a message:

1. Use the DCP Address and channel number within the message to find a matching
transport medium.

2. Get the platform record associated with that transport medium. The platform
record is associated with a platform-config record, which in turn contains sensor
records and one or more Decoding Scripts.

3. Retrieve the Decoding Script associated with this transport medium. For example,
the message came in on channel 34, so use the ‘ST’ (self-timed) script.

4. Parse the script into a hierarchy of executable operations.
5. Starting with the first format statement in the script, execute the operations

against the message data.

Step 4 (parsing the script) is only done once. If a second message is received for the same
platform, the already-prepared scripts are reused.

Step 5 (executing the script against the message data) is the subject of this chapter.

8.2 Stepping through the Script and the Data
As it is executing, the script keeps track of three things:

• The currently executing format statement
• The current operation within the format statement
The current position within the message data

The message header (e.g. 37-byte DOMSAT header) is not processed by the script. The
data pointer is initialized to the first actual message byte.

The script starts with the first format statement, so position is important. This differs from
previous versions of DECODES and EMIT.

Each format statement has a label. Several operations can cause decoding to jump to a
new statement, identified by its label. Labels may only contain letters and digits.

DECODES User Guide 59

Older versions of DECODES and EMIT had fixed rules about the labels for self-timed
and random messages. Self-timed formats started with the label ‘ST’, and random
message formats started with the label ‘RD’. This is no longer required, but it is a useful
convention to continue.

Adjacent format statements with the exact same label are joined into a single long
statement before parsing and executing.

The various operations in the format statements step through the message data from
beginning to end. There are operations for skipping characters and lines, and for
positioning the data pointer within the message data.

8.3 Format Operations
A quick reference of DECODES format operations is presented in Table 8-1. The
subsections that follow provide more detail on each one.

Several of the operators are identified by a letter. The parser is not case-sensitive, so ‘X’
and ‘x’ can both be used for skipping characters.

DECODES User Guide 60

Format
Command

Description Examples

nX Skip n data characters 2X - skip 2 characters (bytes).

nP Position to the nth character in the current line. 2P - Position to 2nd character in current line.

n/ Skip n data lines 3/ - skip 3 lines

n\ Skip backward n data lines.

>label Jump to the format with the specified label >ST3 -switch to format with label ST3

n(operations...) Repeat operations enclosed in parenthesis n times 10(3X, F(S, A, 6,1)) – repeate “3x,F(s,A,6,1)” 10
times.

C(nN, label) Check the next 'n' characters for digits. If all are digits,
continue to the next format operation. If at least one is not
a digit, switch to format with specified label. Do not
change the current data pointer.

C(3N, ERROR) - checks the next three characters
for digits. If at least one of the three is not a digit,
switch to format ERROR

C(S, label) Check the next character for a sign ('+' or '-'). If it is a
sign, continue to the next operation within this format
statement; otherwise, switch to the format with specified
label. Do not change the current data pointer.

C(S, ERROR) - checks the next character for a
sign, switch to format ERROR

C('str', label) Compare the string of characters 'str' with the next length-
of-string characters in the device data. If there is a match,
continue to the next operation in the current format.
Otherwise, switch to the format with the specified label.
Do not change the current data pointer.

C('001',NXT) - checks the next three characters
for a match with '001'. If there is no match, change
to format labeled NXT.

S(n, N, label)

S(n, S, label)

S(n, A, label)

S(n, 'str', label)

The second argument defines what to scan for:

 N = scan for any number character (digits)
 S = scan for any sign character ('+' or '-')
 A = scan for any alphabetic character
 'str' = Scan for specified string

Starting at the current byte, scan at most n data bytes until
either the target of the scan is found or an end-of-line (LF)
is found.

If the target of the scan is found, continue with the next
operation in the current format. Otherwise switch to the
format statement with the specified label. After the
operation is completed the current data pointer points to
where the scan halted, i.e. if target character(s) is found,
it points to that character. Otherwise, it is moved 'n'
characters form the previous position.

A special case of the S operation results when n is 0. In
this case the current data pointer remains unchanged. If
the target of the scan is found, continue with the next
operation. Otherwise switch to specified format. This
feature allows multiple tests on the same data character.

S(6,N,ERROR) - scan at most the next 6 characters
searching for a number or a sign; and if found, set
the data pointer to the matching character and
continue to the next format operation; if not found,
set the data pointer plus 6 and change to the format
with the label ERROR

S(0,'A',NXT) - check the current data character to
see if it matches 'A'; if it does, continue to the next
format operation; if not found, change to format
with format label NXT; in either case the data
pointer is not changed.

S(10,'01+',ERROR)- scan the next 10 characters
for the string '01+'. If not found, change to format
with label ERROR.

nF(FT, DT, L, S, E) Field Descriptions. Many varieties.

Table 8-1: Format Operations at a Glance.

DECODES User Guide 61

8.3.1 Skipping and Positioning Operations
To skip a single character:

x

To skip a specified number of characters, place a number before the ‘X’:
5x

To skip to the end of the current line and continue processing data at the beginning of the
next line, use a forward slash:

/

To skip to the end of more than one line, place a number before the slash:
2/

To position the data-pointer to a particular character position on the line, put a number
followed by the letter ‘p’. The following positions the pointer to the 5th character of the
line. Note: byte position 1 is the start of the line.

5p

To skip backward a number of lines, use a backslash preceded by a number.
2\

8.3.2 The Check Operation
Check commands are used to check the current location in the data for a specified
condition. If the condition is true, the data pointer is not altered. If the condition is false,
you specify an alternate format statement to jump to.

To check to make sure the next n characters are numbers (digits), and jump to the
statement labeled ‘NAN’ if any are not, do the following. Note that if the check is true,
we proceed with the next operation, which assigns the numbers to a sensor value.

c(5N, NAN), f(s,a,5,1)

To check if the next character is a sign (either ‘+’ or ‘-‘), and jump to the statement
NOSIGN if not:

c(S, NOSIGN), ...

To check to see if the data matches the string ‘AA’ and skip to the format labeled ‘BB’ if
it does not:

c('AA', BB), ...

In this usage of the check command, the string must match exactly. The check is case
sensitive and the entire string must match the current data position. Otherwise the check
is false and control jumps to the named format statement.

DECODES User Guide 62

8.3.3 The Scan Operation
Scan commands are used to scan forward from the current location in the data until a
specified condition has occurred. These commands are used to position to a particular
location based upon a specified condition.

Scan operations have the following syntax:
S(n, condition, label)

…where n is the number of characters to scan (or to the end of the current line),
condition specifies what we are scanning for (see below), and label specifies the format
that we jump to if the condition is not met.

The condition can be one of the following:
N Scan for any digit
S Scan for any letter, either upper or lower case
Xnn Scan for a character with the hex value nn
'str' Scan for the exact string ‘str’

If the condition is true (i.e. the requested pattern was found), processing continues to the
next operation in the current format statement. The data pointer is left at the first
character that matched the scan. For strings, the data pointer is left at the first character of
the string.

8.3.4 The Jump Operation
The Jump operation causes an unconditional jump to a specified format statement. The
data pointer remains unaffected. The jump operation has the following syntax:

>label

8.3.5 The Repeat Operation
Any group of operations can be performed repeatedly. Operations enclosed in
parentheses and preceded by a number will be performed the specified number of times.
For example,

8(x,F(S,B,3,1))

causes the operations within the parentheses (the x operation and the F operation) to be
performed 8 times.

DECODES User Guide 63

8.3.6 Field Operations
Field operations are used to extract time and sensor values from the message. The general
form of a field description is:

 nF(ft, dt, length ,sensor # or fld-ID, E)
where:

• n is a repetition factor
• ft defines the type of field
• dt defines the type of data
• length defines the field length with optional delimiter.
• sensor # defines the sensor number associated with this field (only used in sensor-

value fields)
• fld-id is used with DATE and TIME fields to specify different representations
E is used with TIME fields to indicate that the recording of time should be viewed as an

event

The field type can be one of the following:

D Date Field (see 2.2.4.8.1)
T Time Field (see 2.2.4.8.2)
TI Time Interval Field (see 2.2.4.8.3)
F Format Label Field (see 2.2.4.8.4)
S Sensor Value Field (see 2.2.4.8.5)

The data type can be one of the following:

A ASCII
B Binary (unsigned)
I Integer (signed binary)
L Labarge pseudo-ASCII
X Hexadecimal
S String
BC Campbell Scientific Binary Format
C Campbell Scientific Binary Format (first byte defines sign and magnitude)
BD Design Analysis binary Format (Integer value made negative by sign bit)
BT Telonics Binary Format (Integer value made negative by sign bit)

DECODES User Guide 64

Field Length and Delimiters:

Length can be optionally followed by the character D and a delimiter character. For
example:

6D,

This indicates that the field has a length of 6 characters or can be delimited by a comma.

The delimiter can be simply asserted (as in the example above), enclosed in single quotes,
or represented as xnn where nn is the hexadecimal representation.

For example:

6D, The field is delimited by a comma

6Dx1E The field is delimited by a period (the hexadecimal representation
of a period is 1E).

6D' ' The field is delimited by a space

If the character after the 'D' is 'S', it means that the data is delimited by a sign (+ or -).

Care must be taken in positioning your data pointer after a delimited field. The pointer
will be left at the delimiter (unless you place an ‘X’ after the delimiter, see below). Hence
you will probably want to use a skip operation to skip the delimiter after parsing the field.

If the delimiter is not found, the pointer is advanced by length characters.

Placing an 'X' character is used to indicate that the delimiter should be automatically
skipped obviating the need for a format command of 1X after each field description.

8.3.6.1 Date Fields
Date field descriptions have a field type of 'D'. Date fields are used in EDL files to extract
time from the message data. The times are then subsequently used to time-tag data
samples.

The form of a date field description is

 F(D, data type, length<Dc>, fld-id)
The 'fld id' parameter is used to define four different date formats. Possible formats are as
follows:

 F(D, type, length<Dc>,1)
Fld-id 1 indicates the date is basically in the format year, month, day. The format differs
slightly for different field lengths. For length 8, fields have the format YY/MM/DD, YY-
MM-DD, and YY MM DD; for length 6, fields have the format YYMMDD.

 F(D, type, length<Dc>,2)

Fld-id 2 indicates a Julian day is used. For length 8, fields have the format YYYY-DDD,
YYYY/DDD; for length 7, YYYYDDD; for length 6, YY-DDD, YY/DDD; for length 5,
YYDDD; for length 3, DDD; for length 2, DD. For cases where the year is not in the
date field, the year will default to the current year unless the user specifies a year during
the data conversion process. If the user lets the year default and a Julian day is found that

DECODES User Guide 65

exceeds the current Julian day, it will be assumed that the data belongs to the previous
year and so the year will be decremented.)

 F(D, type, length<Dc>,3)
Fld-id 3 indicates only the month and day are recorded. For length 5, fields with format
MM/DD, MM-DD, AND MM DD; for length 4, MMDD. The same rules about the
missing year apply to the field descriptions for dates with fld id of 3 as the ones for the
dates with fld id of 2.

 F(D, type, length<Dc>,4)
Fld-id 4 indicates the same type of format as fld-id 1 but in a different order-month, day,
year. For length 8, fields with format MM/DD/YY, MM-DD-YY, and MM DD YY; for
length 6 MMDDYY.

You can also parse the date components individually:
F(YR, type, length) Parse a year field. Length can be 2 or 4.

F(MN, type, length) Parse a month field. If length is 2, expect a number

from 1 to 12. If length is 3, expect a 3-character
month abbreviation like jan, feb, etc.

F(DY, type, length) Parse day of month.
.
F(JDY, type, length) Parse julian day-of-year.

8.3.6.2 Time Fields
Field descriptions for times have a field type of 'T' and a data type of 'A' (ASCII). Thus,
the form of a field description for a time is

 F(T, A, length<Dc><, sensor #, E>)
The optional 'sensor #' and 'E' parameters signify that the time recorded is an event. This
is used for recorders that record only the time whenever an event occurs e.g. the time is
recorded whenever a tipping bucket tips. In this case, the recorded time is considered to
be the data. When DECODES encounters a field description for a time and it has a
sensor number and the 'E' parameter, DECODES will use the value 1 as the data value
associated with that time.

The raw value of 1 can be converted to the desired units via an EU conversion in the
script. For example, if a tipping bucket rain gage records the time whenever .01 inches of
rain falls, convert the raw value of 1 to .01 with a linear EU conversion.

For length 8, times are expected with format HH-MM-SS or HH:MM:SS; for length 6,
HHMMSS; for length 5, HH:MM, HH-MM; for length 4, HHMM.

DECODES User Guide 66

8.3.6.3 Time Interval Fields
Time interval field descriptions have a field type of TI and a data type of 'A' (ASCII).
The time interval field describes a field that contains a new time interval for recording
data. This field description is useful for recorders that can adjust the recording interval
from that set in the SENSORS entity to a new one when certain conditions occur. The
form of a field description for a time interval is

 F(TI, A, length<Dc>)
The format of the data field that it describes is the same as those for the time field
description.

8.3.6.4 Format Label Fields
Format-label fields describe a data field that contains a code that is to be used as a format
label to select a new format. DECODES extracts a label from the message data and
jumps to a matching format statement.

The data pointer will remain at the character immediately following the extracted format-
label.

Format-label fields allow DECODES to switch formats based upon a code found in the
device data. For example, if a device records the data in different formats and also
records a code that identifies the each format, a statement can be written for each code,
using the code itself as a format label.

If DECODES cannot find a match for the label extracted from the data, it will attempt to
switch to a format statement with the label ‘ERROR’. If none exists, decoding of this
message will be aborted.

The format of a field description for format labels is

 F(F, A, length<Dc>)
Examples:

F(F, A, 4) - Format label field is 4 characters long.

F(F, A, 8D,) - Format label field is delimited by a comma and has at most 8
characters.

DECODES User Guide 67

8.3.6.5 Sensor Value Fields
Sensor field descriptions have a field type of 'S'. They are used to extract data samples
from the message. The format of a sensor field description is

nF(S, data type, length<Dc>, sensor #)
“Data type” can be one of the following:

• A ASCII
• B Binary (unsigned)
• I Integer (binary signed)
• X Hexadecimal

Examples:

F(S, A, 6, 1) The Data will contain one 6-character ASCII sample for sensor
number 1.

F(S, A, 5D,,2) The data is delimited by a comma and has at most 4 ASCII
characters; the value was produced by sensor 2.

3F(S, B, 3, 1) 3 signed-binary samples for sensor number 1. Each sample is 3
characters long.

DECODES User Guide 68

9. DECODES Routing Specifications
Figure 9-1 shows the data flow for a routing specification. Take a moment to study the
components involved. This section will discuss how to run a routing specification and
how to control each of the components shown in the figure.

DataSource

LRGS,
DRS,

GOES DRGS,
File,

Directory,
LOS Radio,

etc.

Decode &
Convertraw data

Equation
Processor

Extract samples,
time-tag,

convert to EU

Stage-to-flow,
other algorithms,

table-lookup,
USGS Rating Tables,

etc.

extracted
samples

Presentation
extracted
& derived
samples

Formatting

Converted to desired EUs,
rounding rules applied

Consumer

SHEF, SHEFIT,
Human Readable,

STDMSG, EUMSG,
DUMP Debug, etc.

Complete,
formatted data

File, Directory, Pipe,
Program, Socket, GUI,

etc.

Convert to desired
engineering units, apply

rounding rules, etc.

Figure 9-1: Data Flow for Routing Specifications.

DECODES User Guide 69

9.1 How to Run a Routing Specification
Synopsis:

rs <options> spec-name

Options:
-e Run from the editable database (default is installed database)
-s Script name to be executed. This option may appear multiple times.

This can also be accomplished with the “scriptname” property.
-m Do NOT apply sensor min/max limits (default is to do so).

Description:
This script starts a Java Virtual Machine running the specified routing spec. All of the
parameters that control the action of the routing spec are specified in the database or the
DECODES properties file. Hence there are no options to this command.

Routing Spec Properties can be used to control the execution of the spec, or to control the
actions of various component objects. The properties which apply at the top level are:

• scriptname: This is a blank-separated list of script names to be executed. The default
action is to execute any script. This property is equivalent to the -s command line
argument.

nolimits: Value is either true or false (default = false). This property is equivalent to the -
m command line argument. It tells the spec to NOT apply sensor min/max limits,
even if they are defined.

Examples:
rs Atlanta-lrgs-input Execute routing spec “Atlanta-lrgs-input”

from the installed database.

rs -e test Execute routing spec “test” from the

editable database.

rs -e -s ST test Execute routing spec “test” from the

editable database, but only process
messages for ST (self-timed) scripts.

9.1.1 Routing Spec Properties
In the database editor you can enter properties that affect various aspects of a routing
spec. Currently, none of these properties are used by the routing spec itself. Rather they
are passed to the components of the routing spec like Data Source, Consumer, Output
Formatter, etc. The properties used by components are described in the sub-sections that
follow.

DECODES User Guide 70

9.2 Data Sources
The following sections describe the semantics of data sources. See section 7.7 for
instructions on how to modify a data source’s parameters.

9.2.1 LRGS Data Source
LRGS Data Sources are used to connect to LRGS or DRS systems over the network. The
LDDS Server must be running on the LRGS you want to connect to.

Properties for the LRGS Data Source may be placed in the Data Source record or the
Routing Spec Record in your DECODES database. Properties defined in the Routing
Spec record will override those of the same name defined in the Data Source record.

So, for example, if the Data Source record contains “username=joe”, but the Routing
Spec record contains “username=ted”, THEN “ted” will be the username passed to the
LRGS server.

Accepted properties are as follows:

• host: The host name or IP Address of the LRGS system to connect to. (Optional, If
missing, the name of the data source object is used.)

• port: Port number for this LRGS’s server. (Optional, default = 16003)
• username: registered user on the LRGS server (required)
• password: Some LRGS servers are configured to require passwords. If this is the

case, you will need to enter the password here. Warning! The password will be
stored in clear text in the SQL database and XML files.

• single: (Default=false) The newer LRGS servers have a new feature whereby many
DCP messages can be returned for a single request. By default, DECODES will use
this feature if the server supports it. To force the old (single message per request)
behavior, add a property “single” with a value of either “on”, “true”, or “yes”.

• sendnl: (Default=true) – Old DRS servers do not support network list transfers. Set
this to false when connecting to such servers. The data source will then assume that
the network lists are already loaded on the DRS. You must then transfer the list using
some other mechanism (e.g. FTP) prior to running the routing spec.

• response.timeout: (Default=60 seconds) This is the number of seconds to wait for a
response from this server. See discussion of timeouts below.

• searchcrit: If supplied, this should be the full path-name to a search criteria file to be
passed to the server. See below on how searchcrit information is processed.

Each time an LRGS is initialized, it is passed the new search criteria from the routing
specification. This information includes the “since” and “until” times, network lists, and
the routing spec properties.

The Routing Spec may contain a property called “lrgs.timeout”, set to a number of
seconds. If so, this value will be used by the LRGS data source. The default timeout is 60
seconds.

DECODES User Guide 71

The routing spec will exit with the LRGS Data Source determines that the specified “until
time” has been reached. If no until time is specified, the routing spec will continue
running indefinitely.

The “searchcrit” Property
If you supply a “searchcrit” property in either the routing spec or data source record, it
will be the full path-name to a search criteria file. This allows you to use the full range of
search-criteria in a routing spec.

The information in the file will be somewhat modified before being passed to the server.
If the routing spec contains a “since” or “until” time, these will override the values in the
search criteria.

If the searchcrit names a network list, with or without the “.nl” extension, then:

• IF the list is contained in your DECODES database, it will be sent to the server.
• ELSE IF the list is found on your hard disk in either the current directory or a

subdirectory called “netlist” (i.e. in “.” or “./netlist”), then it will be sent to the server.
ELSE, assume that the list already resides on the server.

Also, any network lists specified directly in the routing spec will be sent to the server.

DECODES User Guide 72

9.2.1.1 Timeouts in LRGS Data Sources
There are two timeout values that effect the operation of an LRGS Data Source:

The “response.timeout” property in the LRGS Data Source object controls how long to
wait for a response from the server after sending a request. The purpose of this timeout is
to catch connections that have failed. For example, the server is no longer responding or a
WAN link has gone done.

The “lrgs.timeout” property in the Routing Spec object, specifies the maximum number
of seconds to wait for the next message to arrive. This means, even if a link is up and the
server is responding to each request in a timely fashion, wait no more than this many
seconds for the next message. The purpose of this timeout is to catch problems upstream
from the server.

The “lrgs.timeout” property is associated with the routing spec (not the Data Source)
because it depends on what data you are retrieving. For example, if I am getting data
from a single DCP that reports hourly, I might set lrgs.timeout to 3660 (1 hour and 1
minute).

In most cases, the “response.timeout” should be fairly low. The default value of 60
seconds should suffice.

When a timeout (of either type) occurs, the LRGS Data Source throws an exception
and…

• If this LRGS is part of a Hot Backup Group, the group will attempt to connect to
another LRGS.

• If this LRGS is the sole data source, the routing spec will terminate.

DECODES User Guide 73

9.2.2 File Data Source
A File Data Source reads a series of DCP messages from a single file. It processes the file
from beginning to end and returns each message found therein. After reaching the end of
the file, the Data Source causes the routing spec to exit.

Accepted properties for a File Data Source are as follows:

• filename: If present, this value will be used as the file name to be read. It can be a
complete path name or a filename relative to the current working directory. If this
property is absent, the name of the data source will be assumed to be a file name.

• before: A special string that delimits the beginning of a new message in the file. This
string may contain binary and escaped characters such as \n (newline) or \001 (ASCII
STX).

• after: A special string the delimits the end of a message in the file.
• mediumType: Specifies the type of data stored in the file. (Optional, default is

“GOES”).
• mediumId: Specifies the transport medium ID of the platform that generated the

messages in the file. Optional: Only use this if all the messages in the file came from
the same platform. This is primarily used for EDL files collected in the field.

9.2.2.1 Delimiting Messages Within the File
The ‘before’ and ‘after’ strings are optional. Here is how DECODES interprets them:

• If neither ‘before’ or ‘after’ is specified, the entire file is assumed to contain a single
message.

• If ‘before’ is specified, but ‘after’ is not. DECODES will scan the file for the ‘before’
string and return data following it, up to, but not including the next ‘before’ string.
The final message terminates at end-of-file. Any data in the file prior to the first
‘before’ string will be ignored.

• If ‘after’ is specified, but ‘before’ is not. The first message starts at the beginning of
the file and continues up to, but not including, the first occurance of the ‘after’ string.
ny data at the end of the file not terminated by the ‘after’ string will be ignored.

• If both ‘before’ and ‘after’ are specified, only completely delimited messages will be
processed from the file.

9.2.3 Directory Data Source
NOT YET IMPLEMENTED!

A directory data source continually scans a specified directory. When files are placed in
the directory they are immediately processed with a dynamically generated “File Data
Source”. For this reason, the before, after, mediumType, and mediumId properties work
and have the same meaning as they do for File Data Source.

The files must be complete when they are placed in the specified directory. So, if you are
constructing the file by reading data from a socket or serial line, construct a temporary

DECODES User Guide 74

file in a different directory. When the file is complete, move it to the directory specified
for the Directory Data Source.

9.2.4 Hot Backup Group Data Source
A Hot Backup Group Data Source is primarily used for a set of LRGS connections. One
connection may fail, in which case we want our routing spec to try another. This makes
your routing spec more reliable, particularly if this is a real-time routing spec that runs
continuously (i.e. no “Until Time”).

Currently there is only one property that is used by a Hot Backup Group:

• recheck: (default = 900 seconds, or 15 minutes) – If the currently active data source is
not the first one in the list, the Hot Backup Group will attempt to connect to higher
priority data sources at this period.

• fudge: (default = 120 seconds, or 2 minutes) – Amount of time to back-up after
connecting to new data source.

The Hot Backup Group contains an ordered list of LRGS data sources. The group will
prefer the members in the order they are listed.

Upon start-up, the group will attempt to connect to a LRGS, starting with the first one
listed. Once a successful connection is made, this LRGS becomes active. The group then
reads DCP messages from this source until…

• The active source fails (either a timeout or broken connection), or
• The active source is not first in the list and the recheck period expires.

When this happens, the group will try to connect to a source, once again starting from the
first in the list.

When the group changes from one active source to another, it passes the new source the
network lists and search criteria with one modification: The ‘since’ time is adjusted to:

 LastMessageTime – fudge

… where LastMessageTime is the time of the last DCP message I received. The ‘fudge’
factor (default=120 seconds) can be controlled via a property setting.

The purpose of this fudge factor is to account for small variations in the system clocks of
the LRGS members. If you have all your systems synchronized via NTP you can make
the fudge factor very small.

Larger fudge factors may result in duplicate messages: A DCP message received from
one LRGS and then after a switch, the same message received from the new LRGS.

DECODES User Guide 75

9.2.5 Round Robin Group Data Source
NOT YET IMPLEMENTED!

A round-robin group contains a list of other data sources.

The purpose of a round-robin group is to continually read data from all data sources in
the group. This differs from a hot-backup group, which only uses one data source at a
time

DECODES User Guide 76

9.2.6 Socket Stream Data Source
A socket stream data source opens a socket and reads a one-way stream of data
containing raw DCP messages. Some DRGS and DOMSAT product provide such a
stream.

Accepted properties for SocketStreamDataSource are:

• host = the host name or IP address of the server
• port = the port number of the socket to be opened
• lengthAdj = a negative or positive number. The default value is -1. (See below)
• delimiter = A string that begins each message, use \r for carriage return and \n for

linefeed. The default delimiter is \r\n. (See below)
• endDelimiter = A string that marks the end of each message. This is required if

header is “noaaport”. The NOAAPORT message format determines the message
length not from the header but from the beginning and end delimiters.

• header = GOES, VITEL, NOAAPORT, Vaisala. The default is GOES (See below)

Delimiters and Length Adjustments
Each message must start with a 37-byte DOMSAT header. The last 5 bytes of the header
is the number of message bytes to follow. Immediately following the message data, a
delimiter is expected. The delimiter is not included in the message length.

The Vitel DRGS reports a message length which is actually 4 more than the number of
bytes actually present in the message data. Each message is terminated by a carriage
return and linefeed. Hence the proper settings for a Vitel DRGS are:
 lengthAdj = -4

 delimiter = \r\n

The DataWise DOMSAT system reports a length that is one greater than the number
actually present. It terminates each message with 3 sets of carriage-return/linefeed. The
proper settings for a DataWise DOMSAT socket stream are:
 lengthAdj = 0

 delimiter = \r\n\r\n\r\n

How messages are parsed
The socket is opened. The input software expects the stream to start with a message
header, followed by the message data, followed by the delimiter. This cycle repeats
indefinitely until the socket is closed.

The input software can get out of sync in one of the following ways:

• Detecting an invalid 37-byte header (no DCP address, channel number, or message
length).

Failing to find the delimiter string

DECODES User Guide 77

When this happens, the input software goes into “hunt mode”. It will read characters from
the socket looking for the delimiter sequence. Once found it will again attempt to read the
37 byte header.

Look at the debug-log when running the routing spec. If your ‘lengthAdj’ and ‘delimiter’
parameters are correct you will never see the messages saying that the software has
skipped data. If you do see these messages:

• Consult the manual for the server system to determine how messages are formatted.
• Make sure the delimiter string is correct as described above.
Try adjustin lengthAdj downward, into negative numbers (incrementally).

Network Lists and Time Ranges
Since a socket-stream is assumed to be a real-time data source, the input software will
ignore the ‘since’ and ‘until’ times specified in the routing spec.

Network lists will be used to filter incoming data. Only messages whose DCP address is
contained in one of the routing-specs network lists will be processed. If the routing spec
contains no network lists, all data will be processed.

Header Format
The “header” property should be one of “GOES”, “VITEL”, or “NOAAPORT”. The
default is “GOES” if the property is missing. The Vitel header is slightly different in that
it does not include the failure-code field, causing subsequent fields to be shifted one
character to the left.

9.2.6.1 Using SocketStreamDataSource for NOAAPORT
NOAAPORT messages are received over a socket in the following format:

[SOH]\r\r\nNNN\r\r\nHHH[RS]DDD\r\r\n[ETX]

…where

• [SOH] is an ASCII Start-Of-Header character (octal \001)
• NNN is a NOAAPORT 3 digit sequence number
• HHH is a NOAAPORT Header (ignored)
• [RS] is an ASCII Record-Separator character (octal \036)
• DDD is the DCP message containing time stamp and other header fields before and

after the message proper.
• [ETX] is an ASCII End-of-Text character (octal \003)

The DDD data field contains all the header fields and message-data that we need. We
want to ignore everything else. Consequently use the following Data Source Properties:

• host
• port =
• delimiter = \036
• endDelimiter = \r\r\n\003
header = NOAAPORT

DECODES User Guide 78

The Socket Stream will then process only the DDD (data) field between the [RS] and
\r\r\n[ETX], and ignore everything else.

The Data Field itself will have the following format:
AAAAAAAA DDDHHMMSS ddd... SSFFNN CCCs

…where

• AAAAAAAA is the 8-hex-char DCP Address
• DDDHHMMSS is the date/time stamp.
• ddd… is the actual message data
• SS is the signal strength
• FF is the Frequence offset
• NN is a placeholder for IFPD (it is always set to ‘NN’)
• CCC is the GOES Channel number, padded on the left with blanks (3 characters)
• s is the GOES Spacecraft (E or W)

9.3 Output Formatters
DECODES supports a variety of output formats including:

• SHEF – Standard Hydrometeorologic Exchange Format .A lines)
• SHEFIT – Intermediate format defined by the USACE Hydrologic Engineering

Center. Used to input data into the Corp’s CWMS database.
• Human Readable - Simple but compact time-sorted table format
• EMIT-ASCII - Compatible with EMIT when “ASCII” format is selected.
• EMIT-ORACLE - Compatible with EMIT when “ORACLE” format is selected.
• Dump – Used primarily for trouble-shooting, this format dumps all known

information about samples, sensors, & platform.
• STDFMT - Standard format used by USGS for data-ingest into NWIS
TransmitMonitor - Displays log of transmission quality parameters and battery voltage.

The following subsections contain more details on individual formats.

DECODES User Guide 79

9.3.1 SHEF Output Format
The SHEF Output Formatter can produce either the “.A” or “.E” type lines:

• .E is normally used for regular interval data, such as is found in self-timed DCP
messages. Figure 9-2 shows an example of the SHEF .A.

.A is normally used for irregular interval data, such as is found in random DCP messages.
Figure Figure 9-3 shows an example of SHEF .E.

To force only .A lines to be used in the output stream, add a property to your routing spec
with the name “dotAOnly” and a value of “true”.

SHEF time stamps allow 4 digit or 2 digit years. The default is a 2 digit year. To force the
century to be included, add a property to your routing spec with the name “century” with
a value of “true.

Likewise, seconds can be omitted in SHEF time stamps. By default they are included. To
force them to be dropped, add a routing-spec property named “seconds” with a value of
“false”.

.A BRFW3 011203 GMT+00:00 DH110000 /DUE /HG 38.36 :ft
.A BRFW3 011203 GMT+00:00 DH100000 /DUE /HG 38.35 :ft
.A BRFW3 011203 GMT+00:00 DH090000 /DUE /HG 38.34 :ft
.A BRFW3 011203 GMT+00:00 DH080000 /DUE /HG 38.35 :ft
.A BRFW3 011203 GMT+00:00 DH070000 /DUE /HG 38.35 :ft
.A BRFW3 011203 GMT+00:00 DH060000 /DUE /HG 38.35 :ft
.A BRFW3 011203 GMT+00:00 DH050000 /DUE /HG 38.35 :ft
.A BRFW3 011203 GMT+00:00 DH040000 /DUE /HG 38.35 :ft
.A BRFW3 011203 GMT+00:00 DH110000 /DUS /PC 6.26 :INCH
.A BRFW3 011203 GMT+00:00 DH100000 /DUS /PC 6.26 :INCH
.A BRFW3 011203 GMT+00:00 DH090000 /DUS /PC 6.26 :INCH
.A BRFW3 011203 GMT+00:00 DH080000 /DUS /PC 6.26 :INCH
.A BRFW3 011203 GMT+00:00 DH070000 /DUS /PC 6.26 :INCH
.A BRFW3 011203 GMT+00:00 DH060000 /DUS /PC 6.26 :INCH
.A BRFW3 011203 GMT+00:00 DH050000 /DUS /PC 6.26 :INCH
.A BRFW3 011203 GMT+00:00 DH040000 /DUS /PC 6.26 :INCH

Figure 9-2: Example of SHEF .A Output

.E SSIM5 020212 GMT DH150000 /DUS /VB/ DIH+1 /14.344 :V
.E LFKM5 020212 GMT DH080000 /DUE /HG/ DIH+1 /2.79/2.79/2.79/2.79/2.79/2.79/2.79/2.79 :ft
.E LFKM5 020212 GMT DH150000 /DUE /VB/ DIH+1 /14.344 :VOLT
.E VRNN8 020212 GMT DH150000 /DUE /VB/ DIH+1 /13.876 :VOLT
.E BRFW3 020212 GMT DH080000 /DUE /PC/ DIH+1 /6.26/6.26/6.26/6.26/6.26/6.26/6.26/6.26 :in
.E BRFW3 020212 GMT DH150000 /DUS /VB/ DIH+1 /14.5 :V
.E DURW3 020212 GMT DH080000 /DUE /HG/ DIH+1 /1.75/1.72/1.63/1.6/1.55/1.49/1.49/1.49 :ft
.E DURW3 020212 GMT DH150000 /DUS /VB/ DIH+1 /13.84 :V
.E HOMN8 020212 GMT DH160000 /DUS /VB/ DIH+1 /14.11 :V

Figure 9-3: Example of SHEF .E output

DECODES User Guide 80

9.3.2 SHEFIT Output Format
Figure 9-4 shows an example of the HEC SHEFIT output format.

CE459D7E20011203110000 0 0 0 0 0 0 HP RZZ 1055.530 Z -1.00 0 0 0
CE459D7E20011203100000 0 0 0 0 0 0 HP RZZ 1055.530 Z -1.00 0 0 0
CE459D7E20011203090000 0 0 0 0 0 0 HP RZZ 1055.530 Z -1.00 0 0 0
CE459D7E20011203080000 0 0 0 0 0 0 HP RZZ 1055.530 Z -1.00 0 0 0
CE459D7E20011203070000 0 0 0 0 0 0 HP RZZ 1055.530 Z -1.00 0 0 0
CE459D7E20011203060000 0 0 0 0 0 0 HP RZZ 1055.530 Z -1.00 0 0 0
CE459D7E20011203050000 0 0 0 0 0 0 HP RZZ 1055.530 Z -1.00 0 0 0
CE459D7E20011203040000 0 0 0 0 0 0 HP RZZ 1055.530 Z -1.00 0 0 0
CE459D7E20011203030000 0 0 0 0 0 0 HP RZZ 1055.530 Z -1.00 0 0 0
CE459D7E20011203020000 0 0 0 0 0 0 HP RZZ 1055.520 Z -1.00 0 0 0
CE459D7E20011203010000 0 0 0 0 0 0 HP RZZ 1055.520 Z -1.00 0 0 0
CE459D7E20011203000000 0 0 0 0 0 0 HP RZZ 1055.520 Z -1.00 0 0 0
CE459D7E20011203110000 0 0 0 0 0 0 PC RZZ .000 Z -1.00 0 0 0
CE459D7E20011203100000 0 0 0 0 0 0 PC RZZ .000 Z -1.00 0 0 0
CE459D7E20011203090000 0 0 0 0 0 0 PC RZZ .000 Z -1.00 0 0 0
CE459D7E20011203080000 0 0 0 0 0 0 PC RZZ .000 Z -1.00 0 0 0
CE459D7E20011203070000 0 0 0 0 0 0 PC RZZ .000 Z -1.00 0 0 0
CE459D7E20011203060000 0 0 0 0 0 0 PC RZZ .000 Z -1.00 0 0 0

Figure 9-4: Example of SHEFIT Output Format.

DECODES User Guide 81

9.3.3 Human Readable Output Format
Message for Platform NWSHB5-HOMN8
 | elev | PC | battery |
 | HP | PC | VB |
 | ft | in | V |
12/03/2001 00:00:00 | 1055.53 | 0.0 | |
12/03/2001 01:00:00 | 1055.53 | 0.0 | |
12/03/2001 02:00:00 | 1055.53 | 0.0 | |
12/03/2001 03:00:00 | 1055.53 | 0.0 | |
12/03/2001 04:00:00 | 1055.53 | 0.0 | |
12/03/2001 05:00:00 | 1055.53 | 0.0 | |
12/03/2001 06:00:00 | 1055.53 | 0.0 | |
12/03/2001 07:00:00 | 1055.53 | 0.0 | |
12/03/2001 08:00:00 | 1055.53 | 0.0 | |
12/03/2001 09:00:00 | 1055.52 | 0.0 | |
12/03/2001 10:00:00 | 1055.52 | 0.0 | |
12/03/2001 11:00:00 | 1055.52 | 0.0 | 13.876 |

Message for Platform NWSHB5-WTSM5
 | pool | tail | battery |
 | HP | HT | VB |
 | ft | ft | VOLT |
12/03/2001 00:00:00 | 900.0 | 935.5 | |
12/03/2001 01:00:00 | 900.0 | 935.49 | |
12/03/2001 02:00:00 | 900.0 | 935.5 | |
12/03/2001 03:00:00 | 900.0 | 935.51 | |
12/03/2001 04:00:00 | 900.0 | 935.54 | |
12/03/2001 05:00:00 | 900.0 | 935.61 | |
12/03/2001 06:00:00 | 900.0 | 935.65 | |
12/03/2001 07:00:00 | 900.0 | 935.67 | |
12/03/2001 08:00:00 | 900.0 | 935.67 | |
12/03/2001 09:00:00 | 900.0 | 935.65 | |
12/03/2001 10:00:00 | 900.0 | 935.64 | |
12/03/2001 11:00:00 | 900.0 | 935.61 | 12.004 |

Figure 9-5: Example of Human Readable Output Format.

DECODES User Guide 82

9.3.4 EMIT-ASCII Format
If the routing spec contains a string property called ‘delimiter’, this will be used to
delimit between columns. The default is a single space.

The EMIT-ASCII formatter produces an output that is compatible with the old EMIT
program when “ASCII” was selected as the output format. This format has 12 blank-
delimited fields as follows:

• Hex DCP Address
• EPA Sensor Code (0 if none is assigned)
• Sensor Number
• Time Stamp in the format: YYDDD/HH:MM:SS
• Sample Value (formatted as specified by Presentation Group)
• ‘I’ if this is a self-timed message (meaning interval data); or ‘R’ if this is a random

message.
• DCP Name (the preferred site name as specified by your properties file is used)
• Sensor Name
• SHEF Code (or ‘XX’ if none is specified)
• Recording interval for this sensor (in seconds)
• ‘I’
Engineering Units

Following all sample data, a single line with ‘ZZZZ’ is printed. Figure 9-6 shows a single
message in EMIT-ASCII format.

CE459D7E 0 1 01337/11:00:00 1055.53 I HOMN8 elev HP 3600 I ft
CE459D7E 0 1 01337/10:00:00 1055.53 I HOMN8 elev HP 3600 I ft
CE459D7E 0 1 01337/09:00:00 1055.53 I HOMN8 elev HP 3600 I ft
CE459D7E 0 1 01337/08:00:00 1055.53 I HOMN8 elev HP 3600 I ft
CE459D7E 0 1 01337/07:00:00 1055.53 I HOMN8 elev HP 3600 I ft
CE459D7E 0 1 01337/06:00:00 1055.53 I HOMN8 elev HP 3600 I ft
CE459D7E 0 1 01337/05:00:00 1055.53 I HOMN8 elev HP 3600 I ft
CE459D7E 0 1 01337/04:00:00 1055.53 I HOMN8 elev HP 3600 I ft
CE459D7E 0 1 01337/03:00:00 1055.53 I HOMN8 elev HP 3600 I ft
CE459D7E 0 1 01337/02:00:00 1055.52 I HOMN8 elev HP 3600 I ft
CE459D7E 0 1 01337/01:00:00 1055.52 I HOMN8 elev HP 3600 I ft
CE459D7E 0 1 01337/00:00:00 1055.52 I HOMN8 elev HP 3600 I ft
CE459D7E 00045 2 01337/11:00:00 0.0 I HOMN8 PC PC 3600 I in
CE459D7E 00045 2 01337/10:00:00 0.0 I HOMN8 PC PC 3600 I in
CE459D7E 00045 2 01337/09:00:00 0.0 I HOMN8 PC PC 3600 I in
CE459D7E 00045 2 01337/08:00:00 0.0 I HOMN8 PC PC 3600 I in
CE459D7E 00045 2 01337/07:00:00 0.0 I HOMN8 PC PC 3600 I in
CE459D7E 00045 2 01337/06:00:00 0.0 I HOMN8 PC PC 3600 I in
CE459D7E 00045 2 01337/05:00:00 0.0 I HOMN8 PC PC 3600 I in
CE459D7E 00045 2 01337/04:00:00 0.0 I HOMN8 PC PC 3600 I in
CE459D7E 00045 2 01337/03:00:00 0.0 I HOMN8 PC PC 3600 I in
CE459D7E 00045 2 01337/02:00:00 0.0 I HOMN8 PC PC 3600 I in
CE459D7E 00045 2 01337/01:00:00 0.0 I HOMN8 PC PC 3600 I in
CE459D7E 00045 2 01337/00:00:00 0.0 I HOMN8 PC PC 3600 I in
CE459D7E 70969 3 01337/11:00:00 13.876 I HOMN8 battery VB 3600 I V
ZZZZ

Figure 9-6: Example of EMIT-ASCII format.

DECODES User Guide 83

9.3.5 EMIT-Oracle Format
This format is similar to EMIT-ASCII but more compact. It was originally designed to
input data into an Oracle database, hence the name. It is, however, a generally useful
format in its own right, very easy to parse with a computer program.

The ‘delimiter’ property is supported in the same way as for EMIT-ASCII.

The EMIT-ORACLE formatter produces an output that is compatible with the old EMIT
program when “ORACLE” was selected as the output format. This format has 7 blank-
delimited fields as follows:

• Hex DCP Address
• SHEF Code (or ‘XX’ if none is specified)
• Sensor Number
• Time Stamp in the format: YYDDD/HH:MM:SS
• Sample Value (formatted as specified by Presentation Group)
• ‘I’ if this is a self-timed message (meaning interval data); or ‘R’ if this is a random

message.
Engineering Units

Following all sample data, a single line with ‘ZZZZ’ is printed. Figure 9-7 shows a single
message in EMIT-Oracle format.

CE459D7E HP 1 01337/11:00:00 1055.53 I ft
CE459D7E HP 1 01337/10:00:00 1055.53 I ft
CE459D7E HP 1 01337/09:00:00 1055.53 I ft
CE459D7E HP 1 01337/08:00:00 1055.53 I ft
CE459D7E HP 1 01337/07:00:00 1055.53 I ft
CE459D7E HP 1 01337/06:00:00 1055.53 I ft
CE459D7E HP 1 01337/05:00:00 1055.53 I ft
CE459D7E HP 1 01337/04:00:00 1055.53 I ft
CE459D7E HP 1 01337/03:00:00 1055.53 I ft
CE459D7E HP 1 01337/02:00:00 1055.52 I ft
CE459D7E HP 1 01337/01:00:00 1055.52 I ft
CE459D7E HP 1 01337/00:00:00 1055.52 I ft
CE459D7E PC 2 01337/11:00:00 0.0 I in
CE459D7E PC 2 01337/10:00:00 0.0 I in
CE459D7E PC 2 01337/09:00:00 0.0 I in
CE459D7E PC 2 01337/08:00:00 0.0 I in
CE459D7E PC 2 01337/07:00:00 0.0 I in
CE459D7E PC 2 01337/06:00:00 0.0 I in
CE459D7E PC 2 01337/05:00:00 0.0 I in
CE459D7E PC 2 01337/04:00:00 0.0 I in
CE459D7E PC 2 01337/03:00:00 0.0 I in
CE459D7E PC 2 01337/02:00:00 0.0 I in
CE459D7E PC 2 01337/01:00:00 0.0 I in
CE459D7E PC 2 01337/00:00:00 0.0 I in
CE459D7E VB 3 01337/11:00:00 13.876 I V
ZZZZ

Figure 9-7: Example of Emit-Oracle Output Format.

DECODES User Guide 84

9.3.6 Dump Formatter
DumpFormatter is useful for testing and trouble-shooting. It dumps the raw message,
performance measurements, and decoded data to an output interface. Figure 9-8 shows an
example of this format.

=================================
Start of message for platform NWSHB5-HOMN8
Time Stamp: 12/02/2001 16:08:11
Raw Data:
CE459D7E01336210811G44-
4NN031E9200077B1HAvq@@@Avq@@@Avq@@@Avq@@@Avq@@@Avq@@@Avq@@@Avq@@@Avq@@@Avp@@@Avp
@@@Avp@@@N

Performance Measurements:
DcpAddress=CE459D7E
Spacecraft=E
UplinkCarrier=92
Channel=31
SignalStrength=44
Length=77
ModulationIndex=N
Quality=N
Time=12/02/2001 21:08:11
FailureCode=G
FrequencyOffset=-4

Decoded Data:

Sensor 1: elev, EU=ft(feet), DataType=SHEF-PE:HP
Begin=12/02/2001 16:53:33, End=12/03/2001 06:00:00
Number of Samples=12
Sample[0]=12/03/2001 06:00:00: 1055.53 ' 1055.53'
Sample[1]=12/03/2001 05:00:00: 1055.53 ' 1055.53'
Sample[2]=12/03/2001 04:00:00: 1055.53 ' 1055.53'
Sample[3]=12/03/2001 03:00:00: 1055.53 ' 1055.53'
Sample[4]=12/03/2001 02:00:00: 1055.53 ' 1055.53'
Sample[5]=12/03/2001 01:00:00: 1055.53 ' 1055.53'
Sample[6]=12/03/2001 00:00:00: 1055.53 ' 1055.53'
Sample[7]=12/02/2001 23:00:00: 1055.53 ' 1055.53'
Sample[8]=12/02/2001 22:00:00: 1055.53 ' 1055.53'
Sample[9]=12/02/2001 21:00:00: 1055.52 ' 1055.52'
Sample[10]=12/02/2001 20:00:00: 1055.52 ' 1055.52'
Sample[11]=12/02/2001 19:00:00: 1055.52 ' 1055.52'
Sensor 2: PC, EU=in(inches), DataType=SHEF-PE:PC
Begin=12/02/2001 16:53:33, End=12/03/2001 06:00:00
Number of Samples=12
Sample[0]=12/03/2001 06:00:00: 0 '0.0 '
Sample[1]=12/03/2001 05:00:00: 0 '0.0 '
Sample[2]=12/03/2001 04:00:00: 0 '0.0 '
Sample[3]=12/03/2001 03:00:00: 0 '0.0 '
Sample[4]=12/03/2001 02:00:00: 0 '0.0 '
Sample[5]=12/03/2001 01:00:00: 0 '0.0 '
Sample[6]=12/03/2001 00:00:00: 0 '0.0 '
Sample[7]=12/02/2001 23:00:00: 0 '0.0 '
Sample[8]=12/02/2001 22:00:00: 0 '0.0 '
Sample[9]=12/02/2001 21:00:00: 0 '0.0 '
Sample[10]=12/02/2001 20:00:00: 0 '0.0 '
Sample[11]=12/02/2001 19:00:00: 0 '0.0 '
Sensor 3: battery, EU=V(volts), DataType=SHEF-PE:VB
Begin=12/02/2001 16:53:33, End=12/03/2001 06:00:00
Number of Samples=1
Sample[0]=12/03/2001 06:00:00: 13.876 ' 13.876

Figure 9-8: Example of Dump Output Format

DECODES User Guide 85

9.3.7 USGS STDFMT Output Formatter
This formatter is used by USGS for ingesting data into the National Water Information
System (NWIS). For documentation on this format see Appendix E in the NWIS User
Guide, which can be found at:

http://wa.water.usgs.gov/realtime/adaps/adaps.book.html

Figure 9-9 shows an example of STDFMT output. Each DCP message is placed in a
separate STDFMT envelope.

BE STDDCP
DB 1 1
SD USGS 03323500 0N
SE 8 STAGE00065 11 73F010000
TM 20021030130000
UF 8 10.390 10.390 10.390 10.390 10.390 10.390 10.390 10.390
SE 3 H2O T00010 11 73F010000
TM 20021030130000
UF 8 10.600 10.600 10.600 10.700 11.100 11.400 11.600 11.800
SE 9 BATVT70969 11 63F010000
TM 20021030130000
UF 8 3.740 3.740 3.770 3.850 4.210 4.100 4.000 4.110
EE
BE STDDCP
DB 1 1
SD USGS 03324500 0N
SE 2 STAGE200065 11 63F010000
TM 20021030130000
UF 8 4.540 4.540 4.540 4.540 4.540 4.540 4.540 4.540
SE 5 PREC 200045 6 83F010000
TM 20021030130000
UF 8 116.700 116.700 116.700 116.700 116.700 116.700 116.700 116.700
SE 3 H2O T100010 11 73F010000
TM 20021030130000
UF 8 13.000 13.000 13.000 13.000 13.000 13.000 13.000 13.000
SE 8 BATVTB70969 11 73F010000
TM 20021030130000
UF 8 15.310 15.210 14.910 14.720 14.830 14.710 14.710 14.830
EE

Figure 9-9: Example of USGS STDFMT Output.

DECODES User Guide 86

9.3.8 Transmit Monitor Formatter
The Transmit Monitor format provides a log of transmission quality measurements in an
easy-to-use row column format. The following columns are used by default:

• Message Time Stamp in the form MM/DD/YYYY-HH:MM:SS
• DCP Address (Transport Medium ID)
• Site Name
• Failure Code
• SignalStrength
• Message Length
• GOES Channel Number
• Frequency Offset
• Modulation Index
Battery Voltage

An example of the default format is shown in Figure 9-10.
10/30/2002-20:03:33 CE7718EE 03324500 G 50 209 23 -4 N N 14.83
10/30/2002-20:16:50 CE77835E 03360000 G 50 97 23 -5 N N 13.88
10/30/2002-20:29:25 CE777D08 03327500 G 50 161 23 -2 N N 14.37
10/30/2002-21:03:11 CE14B3F8 03324000 G 50 145 17 0 H N 13.70
10/30/2002-21:07:22 CE14C568 03275000 G 50 113 17 -1 N N 13.74
10/30/2002-22:21:29 CE6D361C 03335500 G 49 113 41 -4 N F 14.12
10/31/2002-00:03:33 CE7718EE 03324500 G 49 209 23 -3 N N 14.72
10/31/2002-00:05:30 CE772D74 03375500 G 49 105 23 -3 N N 13.3
10/31/2002-00:06:27 CE7730D0 03276000 G 49 145 23 2 N N 14.8
10/31/2002-00:16:50 CE77835E 03360000 G 49 97 23 -5 N N 14.23
10/31/2002-00:29:25 CE777D08 03327500 G 50 161 23 -2 N N 13.99
10/31/2002-01:03:11 CE14B3F8 03324000 G 50 145 17 0 H N 13.70
10/31/2002-02:21:29 CE6D361C 03335500 G 50 113 41 -4 N N 14.11
10/31/2002-04:16:50 CE77835E 03360000 G 49 97 23 -5 N N 13.88
10/31/2002-04:29:25 CE777D08 03327500 G 49 161 23 -2 N N 13.79
10/31/2002-05:03:11 CE14B3F8 03324000 G 49 145 17 0 H N 13.70
10/31/2002-05:05:41 CE14D61E 03357500 G 50 145 17 -9 N N 14.70
10/31/2002-05:07:22 CE14C568 03275000 G 50 113 17 -1 N N 13.57
10/31/2002-06:21:29 CE6D361C 03335500 G 50 113 41 -4 N N 14.17

Figure 9-10: Example of Transmit Monitor Format.
You can control the contents of the transmit monitor format by adding properties to the
routing specification:

• The string property “delimiter” has a default value of a single space character. This is
used to separate columns in the output. To ingest this data into a SQL database, for
example, you may wish to use a comma as a delimiter.

The Boolean property “justify” defaults to ‘true’. This causes each column to be either
right or left justified within the column width. The example above shows justified
columns.

The string property “columns” is a blank or comma-separated list of columns that you
wish to see in the output. Table 9-1 shows the column names that can be included in this
string. The default value for the string is:

“time id name FailureCode SignalStrength Length Channel FrequencyOffset
ModulationIndex Quality batt”

DECODES User Guide 87

Column Name Description

time Message time stamp in the format MM/DD/YYYY-HH:MM:SS

id Transport ID (i.e. DCP address for GOES messages)

name Site name

FailureCode 1-character code for GOES messages: ‘G’ means good message, ‘?’
means parity errors.

Length Length of the raw message in bytes

Channel GOES Channel number

FrequencyOffset A sign plus a digit, taken from the DOMSAT message header, this
indicates the frequency offset of the raw message, as reported by
DAPS. The digit indicates the amount of the offset in units of 50Hz.

ModulationIndex ‘N’ for Normal, ‘L’ for Low, ‘H’ for High

Quality ‘N’ (normal) = Error rate betterh than 10-6,
‘F’ (fair) = Error rate between 10-4 and 10-6
’P’ (poor) = Error rate worse than 10-4

SignalStrength in dB.

Spacecraft ‘E’ (East), or ‘W’ (West)

UplinkCarrier Uplink Carrier Status (not implemented in DAPS-I)

batt Battery voltage if available. The most recent sample contained in the
message will be printed. This looks for a sensor with a name that
starts with “batt”. If none found it looks for any sensor with a
datatype equivalent to VB.

Table 9-1: Column Names supported by Transmit Monitor Formatter.

The string property “colwidths” is used to control the width and justification of each
column. It should be a blank or comma-separated list of numbers, one for each column. A
positive number means right-justified. A negative number means left-justified. The
default value of this property is:

19, 8, 10, 1, 5, 3, 2, 2, 2, 5

Example: Cause the formatter to print a comma-separated list of messages. For each
message we only want the time, DCP Address, and battery voltage.

Add the following properties to the routing spec:

• delimiter = , (i.e. a single comma)
• justify = false
• columns = time id batt
• colwidths = 19, 8, 7

DECODES User Guide 88

9.4 Consumers
Consumers receive the formatted data created by DECODES and send it somewhere.
There are currently 4 types of consumers implemented within DECODES:

• PipeConsumer is used to send data from a DECODES routing spec into some other
program in real time.

• FileConsumer sends all data from a routing spec into a single file. The file is closed
when the routing spec is complete.

• DirectoryConsumer creates separate files for each message in a specified directory.
StringBufferConsumer is used internally by GUI programs that display decoded data

interactively.

9.4.1 Pipe Consumer
The Consumer Argument should be one of:

• ‘stdout’ – send data to standard output.
• ‘stderr’ – send data to standard error.
command - an arbitrary command line. The command will be executed and the data will

be piped to the command’s standard input.

PipeConsumer will use the following routing-spec properties to control its actions:

Property Name Default Description

ConsumerBefore none An encoded string that is written to the file
preceding each message. The string may contain
UNIX-style escape sequences such as \n \r \t, and
octal binary characters encoded as \002, etc.

ConsumerAfter none An encoded string that is written to the file after
each message.

9.4.2 File Consumer
The Consumer Argument should be the file name template. The file will be opened when
the routing spec starts. All data from the routing spec will be placed in the file. The file
will be closed when finished.

The file name template may contain a variable of the form $DATE(format) where format
describes how the date/time stamp is to be formatted in the file name. It can contain any
format handled by the Java class java.text.SimpleDateFormat, although since it is used as
a filename, it should not contain spaces or other illegal characters.

See http://java.sun.com/j2se/1.4.1/docs/api/ for complete docs on SimpleDateFormat.
Click on “java.text” in the upper left frame. Then click on SimpleDateFormat in the
lower left frame.

For example, if Consumer Arg is “data-$DATE(yyyyMMdd-HHmmss)”, this might
result in a filename data-20031213-120000.

DECODES User Guide 89

This consumer should therefore only be used with routing specs that run for a finite
period of time. That is, the ‘until’ time should be specified if reading from an LRGS.

FileConsumer will use the following routing-spec properties to control its actions:

Property Name Default Description

ConsumerBefore none An encoded string that is written to the file
preceding each message. The string may contain
UNIX-style escape sequences such as \n \r \t, and
octal binary characters encoded as \002, etc.

ConsumerAfter none An encoded string that is written to the file after
each message.

9.4.3 Directory Consumer
The Consumer Argument should be a directory name. The routing spec will create a
separate file in this directory to hold the data generated for each message. The file name
will be in the following format:

SiteName-YYYYMMDDHHmmSS

Hence when looking at a sorted directory listing you will see each platform’s files
together in time order.

The Site Name used will be the default site name type defined in your DECODES
properties file.

DirectoryConsumer will use the following routing-spec properties to control its actions:

Property Name Default Description

ConsumerBefore none An encoded string that is written to the file
preceding each message. The string may contain
UNIX-style escape sequences such as \n \r \t, and
octal binary characters encoded as \002, etc.

ConsumerAfter none An encoded string that is written to the file after
each message.

TriggerCommand none NOT YET IMPLEMENTED. This is a command
that DECODES will execute after each file is
generated and placed in the directory. The command
will be passed the complete file path-name as an
argument.

filename none A file-name template to override the default
described above. (see below)

DECODES User Guide 90

Files will be constructed in a temporary location and then moved to the named directory.
Therefore, you can write a program to scan the directory for new files and be assured that
all files in the directory are complete.

If you supply a filename property, it will be used to construct the filename, overriding the
default described above. The template may contain variables of the following form:

• $DATE(format) - See the description of this in section 9.4.2.
• $TRANSPORTID - will be replaced by the DCP address.
• $SITENAME - will be replaced by the site name.

DECODES User Guide 91

9.5 Time Tagging Data Samples
The “DataOrder” property can be set to ‘A’ (for Ascending) or ‘D’ for Descending.

• Ascending means that the oldest samples are first in the message. Successive samples
for the same sensor have an ascending time.

Descending means that the newest samples are first in the message. Successive samples
for the same sensor have a descending time.

The DataOrder property can appear in several entities. This is how DECODES
determines the order for a given sensor:

• If there is a “DataOrder” property in the Equipment Model associated with the
Platform Config. Set this as the default for all sensors. In most cases, this is all that is
necessary.

• If there is a “DataOrder” property in the Equipment Model associated with the
transport medium, this overrides the previous value. An example for using this would
be a random message that reports time in a different order than self-timed messages.

• If there is a “DataOrder” property in the EquipmentModel associated with the
ConfigSensor, use it as the value for that particular sensor. Use this if sensors report
data in different orders.

• If there is a DataOrder property in the PlatformSensor entity, use it as the value for
that particular sensor.

DECODES User Guide 92

10. Specific Scenarios

10.1 How To Create a New Platform Specification

Create a Site for the New Platform
First create a Site for this platform. Recall that in DECODES a “Site” refers to the
location. The Platform resides at the Site.

1. Start the Database Editor by typing ‘dbedit’.

2. Press the ‘Sites’ tab.

3. Make sure the site you want to create doesn’t already exist. Press the column
headers to sort by the various name types. If the site already exists, skip ahead to
“Create a Configuration”.

4. Press the ‘New’ button at the bottom of the Site List Panel. This creates a new site
record and opens it. You now see a Site Edit Panel with the newly created site.

5. A site must have at least one valid name. The new panel shows a site with your
default name-type (probably NWSHB5) and the name “NewName”. Change these
to the proper (unique) name for the new site.

6. On the right side of the Site Edit Panel you can enter other descriptive information
about the site, such as Latitude, Longitude, Nearest City, etc. At a minimum you
should enter the correct time zone for this site.

7. At the bottom of the Site Edit Panel, press ‘Commit’ and the ‘Close’. You should
now see your new site in the site list.

Create an Equipment Model Record for the New Platform
Equipment Model records hold information about each vendor’s platform. Your
platform’s configuration will be associated with an Equipment Model.

8. Press the ‘Equipment’ tab at the top of the editor window. You now see the
Equipment Model List Tab.

9. Each equipment model is given a unique abbreviated name. For example
“SU8004D” is the name for a Sutron 8004 DCP. Does the equipment model for
your new platform already exist? If so, make a note of it and skip ahead to
“Create a Configuration”.

10. Press “New” at the bottom of the Equipment Model List Panel. You are prompted
to enter a new name. There should be no spaces in the name and it must be
unique. A new Equipment Model record is created and opened. You now see the
open Equipment Model Edit Panel.

11. In the edit panel type the descriptive information about the equipment. The Type
value must be set to “DCP.

DECODES User Guide 93

12. Press the “Add” button in the Properties area. Create a property called
“DataOrder” (no spaces). The value should be either A or D. ‘A’ means
ascending, meaning that in messages from this platform, the oldest samples are
transmitted first.

13. Press “Commit” and “Close” when you are finished with the Equipment Model.

Create a Configuration for the New Platform

14. Next you need to create a configuration for the new platform. Press the ‘Configs’
tab at the top of the editor. You should now see the Configuration List Panel.

Recall that in DECODES, most of the information about how to decode and time-tag data
is part of the configuration. A configuration can be shared by several platforms. For
example if you installed 8 Sutron 8200 platforms with exactly the same sensors, and they
all are programmed to generate identically-formatted messages; then you only need to
create one configuration that all 8 platforms can share.

Do you already have a configuration for a platform identical to the new platform? If so,
you can use it. Find its name in the list and make a note of it. Then skip ahead to “Create
the Platform Record”.

15. Press the New button at the bottom of the Configuration List Panel. You are
prompted to enter a unique name for the configuration.

DECODES User Guide 94

Rules and Conventions for Configuration Naming
The only hard rules for configuration names are:

The name must be unique. No two configurations can have the same name.
The name cannot contain any spaces. We recommend limiting the name to alphanumeric

and hyphens.

You should establish an agency-wide convention for naming configurations. You want to
be able to exchange configurations with other districts (and other agencies) without fear
of a name clash.

The USGS has a well established naming convention that other agencies are encouraged
to follow:

 EquipmentModelName-Organization-Sequence

…where:

EquipementModelName is the abbreviation of the Equipment Model record associated
with this configuration. Example “SU8004D” for Sutron 8004 DCP.

Organization is an abbreviation that uniquely identifies your organization and district.
For example “ACEMD” might mean the U.S. Army Corps of Engineers Maryland
District.

Sequence is simply a sequence number.

The following are examples of existing configuration names:

SU8200D-ILEX-005
HA555D-ACEAL-017
HA570D-ACETN-015

DECODES User Guide 95

Enter the Sensor and Formatting Information
After creating a new configuration, a Config Edit Panel will be opened. This screen
contains a lot of important information.

16. Press the ‘Select’ button to the right of “Equipment Model”. Select the equipment
model from the pop-up list.

17. In the text area, type a brief description for this configuration. The description
might contain the number of sensors, SHEF codes, etc.

18. Press the ‘Add’ button in the Sensors area of the screen. The “Edit Config Sensor
Dialog” appears. Fill out the form. Enter a name and data-type for the sensor.
Enter the correct sampling time and interval (this is important for correctly time-
tagging samples from each sensor). When finished, press OK.

19. Repeat the previous step for each sensor.

20. Press the ‘Add’ button in the Decoding Scripts area. The “Edit Decoding Script
Dialog” appears. A Decoding Script tells DECODES how to extract samples from
the raw message.

21. Enter a script name in the upper right of the dialog. Commonly used names are
“ST” for self-timed GOES messages and “RD” for random GOES messages.

22. Enter the format statements manually. Order is important. The script will start
with the first statement. Use the “Up” and “Dn” buttons to move format
statements, if necessary.

23. In the “Sensor Unit Conversions” area of the screen, enter the units and
conversions for each sensor. Enter the units abbreviation (see standard EU
abbreviations table below).

24. If no conversion is necessary, leave algorithm set to “None”. This is appropriate if
the DCP reports values that are already in engineering units. For a linear
conversion, select Algorithm=linear. Then enter A and B coefficients for the
equation:

EU = A * RAW + B
25. Test your script. Load a raw DCP message into the “Sample Message” text area.

The “Load” button lets you load from a file. Even more convenient: Open a
LRGS Browser window and cut & paste. The sample area must start with the
DCP address at the beginning of the DOMSAT header in the DCP message. Any
spaces or other characters before the DCP address will cause decoding to fail.

26. Press the “Decode” button. This will apply the format statements and unit
conversions to the raw data in the sample area. See the results in the Decoded
Data area.

27. Tweak the format statements and unit conversions, then press “Decode” again.
Repeat until decoding is correct. Then press OK.

DECODES User Guide 96

28. If your platform sends both self-timed and random messages, you will need to
create a separate Decoding Script for each. We recommend calling the Self-Timed
Script “ST” and the Random Script “RD”.

Create the Platform Record
You are finally ready to create the platform!

29. Press the “Platforms” tab at the top of the editor.

30. Press the “New” button at the bottom of the screen. This creates a new (empty)
platform record and opens it in a Platform Edit Panel.

31. Press the “Choose” button to the right of “Site”. Select the new site that you
created above.

32. Type a brief description for this platform. This will show up in the list of
platforms for your own easy reference.

33. Press the “Choose” button to the right of “Config”. Select the configuration that
you prepared above. Click OK when the pop-up tells you about the dangers of
changing the configuration assignment. You should now see a list of sensors in
the “Platform Sensor Information” area.

34. Press the “Add” button on the right of the Transport Media area. Fill out the
dialog. A Transport Medium is the glue that associates an incoming message
with your platform records and your decoding scripts.

35. Under Medium Type, select “goes-self-timed”.

36. Under Medium Identifier, type the 8-hex-digit DCP address.

37. Under Decoding Script, select the name of the self timed script (e.g. “ST”).

38. Enter the channel numbers, and if this is for a self-timed message, enter the time
and interval values. Then press OK.

39. If this platform also transmits random, press Add again, select “goes-random” for
Medium Type and “RD” for Decoding Script. Re-enter the DCP address.

40. At the bottom of the Platform Edit Panel press “Commit” and then “Close”.

DECODES User Guide 97

Add the new Platform to a Network List
41. Press the “Netlists” tab at the top of the editor.

42. Highlight the list you want to edit and press “Open”.

43. In the Network List Edit panel, press the “Add” button on the right.

44. Select your new site from the pop-up list and press OK.

45. Press “Commit” and “Close” at the bottom of the screen.

Testing the new Platform in a Routing Spec
46. Run a routing spec that uses the network list that you modified.

47. In the output data, you should see data from your new platform.

DECODES User Guide 98

DECODES User Guide 99

Engineering Unit List
DECODES is delivered with a fairly complete list of engineering units that are used in
hydrometeorologic applications. You may define additional EUs by editing the XML file.
Please email any proposed changes/additions to the decodes Email forum so that, if
appropriate, they can be included in a subsequent release.

When you enter unit values for sensors, use the abbreviation. Case is ignored so ft, Ft, FT
all refer to feet.

Sorted By Name

Name Abbr Family Measures
acre feet acre*ft English volume
acres acre English area
atmospheres atm Metric pressure
bars bar Metric pressure
british thermal unit btu English energy
Calories cal English energy
centimeters cM Metric length
centimeters per second cM/s Metric speed
counts count univ count
cubic centimeter cc Metric volume
cubic feet ft^3 English volume
cubic feet per second cfs English flow
cubic feet per second ft^3/s English flow
cubic inches in^3 English volume
cubic meter m^3 Metric volume
cubic meters per second m^3/s Metric flow
days day univ time
degrees Celsius degC Metric temperature
degrees Fahrenheit degF English temperature
degrees Kelvin degK Metric temperature
dyn dyn Metric force
ergs erg English energy
feet ft English length
feet per second ft/s English speed
fluid ounce floz English volume

DECODES User Guide 100

foot-pounds per second ft*lbf/s English power
gallon gal English volume
grams G Metric mass
grams per liter g/L Metric concentration
horsepower hp English power
hours hr univ time
inches in English length
inches of mercury inHg English pressure
inches per second in/s English speed
joules j Metric energy
Kilocalories kcal English energy
kilograms kG Metric mass
kilojoules kj Metric energy
kiloliter kL Metric volume
kilometers kM Metric length
kilometers per hour kM/hr Metric speed
kilopascals kpa Metric pressure
kilowatts kW Metric power
liter L Metric volume
meters M Metric length
meters per second M/s Metric speed
Metric ton mt Metric mass
micrograms uG Metric mass
micrograms per liter uG/L Metric concentration
microliter uL Metric volume
micrometers uM Metric length
MicroMHOs per centimeter uMHOs/cm metric conductance
MicroMHOs per centimeter uMHO metric conductance
MicroMHOs per centimeter uMHOs metric conductance
miles mi English length
miles per hour mi/hr English speed
miles per hour mph English speed
millibars mbar Metric pressure
milligrams mG Metric mass
milligrams per liter mG/L Metric concentration
milliliter mL Metric volume

DECODES User Guide 101

millimeters mM Metric length
millimeters of mercury mmHg Metric pressure
millimeters per second mM/s Metric speed
minutes min univ time
nautical miles nmi English length
nautical miles per hour nmi/hr English speed
nautical miles per hour knots Metric speed
newtons N Metric force
ounces oz English mass
parts per million ppm univ ratio
parts per thousand ppt univ ratio
pascals pa Metric pressure
percent pct univ ratio
percent % univ ratio
pH pH univ acidity
pint pt English volume
pound-force lbf English force
pounds lb English mass
pounds per square inch psi English pressure
quart qt English volume
second sec univ time
square centimeters cM^2 Metric area
square feet ft^2 English area
square inches in^2 English area
square kilometers kM^2 Metric area
square meters M^2 Metric area
square miles mi^2 English area
square millimeters mM^2 Metric area
square yards yd^2 English area
tons ton English mass
volts V Metric emf
watts W Metric power
weeks week univ time
yards yd English length
yards per second yd/s English speed

DECODES User Guide 102

Sorted By Abbreviation

Name Abbr Family Measures
percent % univ ratio
acres acre English area
acre feet acre*ft English volume
atmospheres atm Metric pressure
bars bar Metric pressure
british thermal unit btu English energy
Calories cal English energy
cubic centimeter cc Metric volume
cubic feet per second cfs English flow
centimeters cM Metric length
centimeters per second cM/s Metric speed
square centimeters cM^2 Metric area
counts count univ count
days day univ time
degrees Celsius degC Metric temperature
degrees Fahrenheit degF English temperature
degrees Kelvin degK Metric temperature
dyn dyn Metric force
ergs erg English energy
fluid ounce floz English volume
feet ft English length
foot-pounds per second ft*lbf/s English power
feet per second ft/s English speed
square feet ft^2 English area
cubic feet ft^3 English volume
cubic feet per second ft^3/s English flow
grams G Metric mass
grams per liter g/L Metric concentration
gallon gal English volume
horsepower hp English power
hours hr univ time
inches in English length
inches per second in/s English speed

DECODES User Guide 103

square inches in^2 English area
cubic inches in^3 English volume
inches of mercury inHg English pressure
joules j Metric energy
Kilocalories kcal English energy
kilograms kG Metric mass
kilojoules kj Metric energy
kiloliter kL Metric volume
kilometers kM Metric length
kilometers per hour kM/hr Metric speed
square kilometers kM^2 Metric area
nautical miles per hour knots Metric speed
kilopascals kpa Metric pressure
kilowatts kW Metric power
liter L Metric volume
pounds lb English mass
pound-force lbf English force
meters M Metric length
meters per second M/s Metric speed
square meters M^2 Metric area
cubic meter m^3 Metric volume
cubic meters per second m^3/s Metric flow
millibars mbar Metric pressure
milligrams mG Metric mass
milligrams per liter mG/L Metric concentration
miles mi English length
miles per hour mi/hr English speed
square miles mi^2 English area
minutes min univ time
milliliter mL Metric volume
millimeters mM Metric length
millimeters per second mM/s Metric speed
square millimeters mM^2 Metric area
millimeters of mercury mmHg Metric pressure
miles per hour mph English speed

DECODES User Guide 104

Metric ton mt Metric mass
newtons N Metric force
nautical miles nmi English length
nautical miles per hour nmi/hr English speed
ounces oz English mass
pascals pa Metric pressure
percent pct univ ratio
pH pH univ acidity
parts per million ppm univ ratio
parts per thousand ppt univ ratio
pounds per square inch psi English pressure
pint pt English volume
quart qt English volume
second sec univ time
tons ton English mass
micrograms uG Metric mass
micrograms per liter uG/L Metric concentration
microliter uL Metric volume
micrometers uM Metric length
MicroMHOs per centimeter uMHO metric conductance
MicroMHOs per centimeter uMHOs metric conductance
MicroMHOs per centimeter uMHOs/cm metric conductance
volts V Metric emf
watts W Metric power
weeks week univ time
yards yd English length
yards per second yd/s English speed
square yards yd^2 English area

DECODES User Guide 105

Sorted By Family, Name

Name Abbr Family Measures
acre feet acre*ft English volume
acres acre English area
british thermal unit btu English energy
Calories cal English energy
cubic feet ft^3 English volume
cubic feet per second cfs English flow
cubic feet per second ft^3/s English flow
cubic inches in^3 English volume
degrees Fahrenheit degF English temperature
ergs erg English energy
feet ft English length
feet per second ft/s English speed
fluid ounce floz English volume
foot-pounds per second ft*lbf/s English power
gallon gal English volume
horsepower hp English power
inches in English length
inches of mercury inHg English pressure
inches per second in/s English speed
Kilocalories kcal English energy
miles mi English length
miles per hour mi/hr English speed
miles per hour mph English speed
nautical miles nmi English length
nautical miles per hour nmi/hr English speed
ounces oz English mass
pint pt English volume
pound-force lbf English force
pounds lb English mass
pounds per square inch psi English pressure
quart qt English volume
square feet ft^2 English area
square inches in^2 English area

DECODES User Guide 106

square miles mi^2 English area
square yards yd^2 English area
tons ton English mass
yards yd English length
yards per second yd/s English speed
atmospheres atm Metric pressure
bars bar Metric pressure
centimeters cM Metric length
centimeters per second cM/s Metric speed
cubic centimeter cc Metric volume
cubic meter m^3 Metric volume
cubic meters per second m^3/s Metric flow
degrees Celsius degC Metric temperature
degrees Kelvin degK Metric temperature
dyn dyn Metric force
grams G Metric mass
grams per liter g/L Metric concentration
joules j Metric energy
kilograms kG Metric mass
kilojoules kj Metric energy
kiloliter kL Metric volume
kilometers kM Metric length
kilometers per hour kM/hr Metric speed
kilopascals kpa Metric pressure
kilowatts kW Metric power
liter L Metric volume
meters M Metric length
meters per second M/s Metric speed
Metric ton mt Metric mass
micrograms uG Metric mass
micrograms per liter uG/L Metric concentration
microliter uL Metric volume
micrometers uM Metric length
MicroMHOs per centimeter uMHO metric conductance
MicroMHOs per centimeter uMHOs metric conductance

DECODES User Guide 107

MicroMHOs per centimeter uMHOs/cm metric conductance
millibars mbar Metric pressure
milligrams mG Metric mass
milligrams per liter mG/L Metric concentration
milliliter mL Metric volume
millimeters mM Metric length
millimeters of mercury mmHg Metric pressure
millimeters per second mM/s Metric speed
nautical miles per hour knots Metric speed
newtons N Metric force
pascals pa Metric pressure
square centimeters cM^2 Metric area
square kilometers kM^2 Metric area
square meters M^2 Metric area
square millimeters mM^2 Metric area
volts V Metric emf
watts W Metric power
counts count univ count
days day univ time
hours hr univ time
minutes min univ time
parts per million ppm univ ratio
parts per thousand ppt univ ratio
percent % univ ratio
percent pct univ ratio
pH pH univ acidity
second sec univ time
weeks week univ time

DECODES User Guide 108

Sorted By Measured Quantity, Name

Name Abbr Family Measures
pH pH univ acidity
acres acre English area
square centimeters cM^2 Metric area
square feet ft^2 English area
square inches in^2 English area
square kilometers kM^2 Metric area
square meters M^2 Metric area
square miles mi^2 English area
square millimeters mM^2 Metric area
square yards yd^2 English area
grams per liter g/L Metric concentration
micrograms per liter uG/L Metric concentration
milligrams per liter mG/L Metric concentration
MicroMHOs per centimeter uMHO metric conductance
MicroMHOs per centimeter uMHOs metric conductance
MicroMHOs per centimeter uMHOs/cm metric conductance
counts count univ count
volts V Metric emf
british thermal unit btu English energy
Calories cal English energy
ergs erg English energy
joules j Metric energy
Kilocalories kcal English energy
kilojoules kj Metric energy
cubic feet per second cfs English flow
cubic feet per second ft^3/s English flow
cubic meters per second m^3/s Metric flow
dyn dyn Metric force
newtons N Metric force
pound-force lbf English force
centimeters cM Metric length
feet ft English length
inches in English length

DECODES User Guide 109

kilometers kM Metric length
meters M Metric length
micrometers uM Metric length
miles mi English length
millimeters mM Metric length
nautical miles nmi English length
yards yd English length
grams G Metric mass
kilograms kG Metric mass
Metric ton mt Metric mass
micrograms uG Metric mass
milligrams mG Metric mass
ounces oz English mass
pounds lb English mass
tons ton English mass
foot-pounds per second ft*lbf/s English power
horsepower hp English power
kilowatts kW Metric power
watts W Metric power
atmospheres atm Metric pressure
bars bar Metric pressure
inches of mercury inHg English pressure
kilopascals kpa Metric pressure
millibars mbar Metric pressure
millimeters of mercury mmHg Metric pressure
pascals pa Metric pressure
pounds per square inch psi English pressure
parts per million ppm univ ratio
parts per thousand ppt univ ratio
percent % univ ratio
percent pct univ ratio
centimeters per second cM/s Metric speed
feet per second ft/s English speed
inches per second in/s English speed
kilometers per hour kM/hr Metric speed

DECODES User Guide 110

meters per second M/s Metric speed
miles per hour mi/hr English speed
miles per hour mph English speed
millimeters per second mM/s Metric speed
nautical miles per hour nmi/hr English speed
nautical miles per hour knots Metric speed
yards per second yd/s English speed
degrees Celsius degC Metric temperature
degrees Fahrenheit degF English temperature
degrees Kelvin degK Metric temperature
days day univ time
hours hr univ time
minutes min univ time
second sec univ time
weeks week univ time
acre feet acre*ft English volume
cubic centimeter cc Metric volume
cubic feet ft^3 English volume
cubic inches in^3 English volume
cubic meter m^3 Metric volume
fluid ounce floz English volume
gallon gal English volume
kiloliter kL Metric volume
liter L Metric volume
microliter uL Metric volume
milliliter mL Metric volume
pint pt English volume
quart qt English volume

DECODES User Guide 111

